Home
Class 11
MATHS
Locus of the feet of the perpendicular f...

Locus of the feet of the perpendicular from centre of the hyperbola `x^(2)-4y^(2)=4` upon a variable normal to it has the equation `(x^(2)+y^(2))^(2)(4y^(2)-x^(2))=lambda x^(2)y^(2)` ,then `lambda=`

Promotional Banner

Similar Questions

Explore conceptually related problems

The locus of the foot of perpendicular drawn from the centre of the hyperbola x^(2)-y^(2)=25 to its normal.

The locus of the foot of the perpendicular from the center of the hyperbola xy=1 on a variable tangent is (x^(2)-y^(2))=4xy(b)(x^(2)-y^(2))=(1)/(9)(x^(2)-y^(2))=(7)/(144)(d)(x^(2)-y^(2))=(1)/(16)

If the line y=3x+lambda touches the hyperbola 9x^(2)-5y^(2)=45 , then the value of lambda is

If the line y=3x+lambda touches the hyperbola 9x^(2)-5y^(2)=45 , then lambda =

if the equation (10x-5)^(2)+(10y-4)^(2)=lambda^(2)(3x+4y-1)^(2) represents a hyperbola then

Find the locus of the midpoints of chords of hyperbola 3x^(2)-2y^(2)+4x-6y=0 parallel to y = 2x.