Home
Class 12
MATHS
((sin((pi)/(8))+i cos((pi)/(8)))^(8))/((...

`((sin((pi)/(8))+i cos((pi)/(8)))^(8))/((sin((pi)/(8))-i cos((pi)/(8)))^(8)) =`

Promotional Banner

Similar Questions

Explore conceptually related problems

The expression [(1+sin((pi)/(8))+i cos((pi)/(8)))/(1+sin((pi)/(8))-i cos((pi)/(8)))]^(8)

" **4.Show that one value of "((1+sin(pi)/(8)+i cos(pi)/(8))/(1+sin(pi)/(8)-i cos(pi)/(8)))^((8)/(3))=-1

The value of (sin frac(pi)(8) + i cos frac(pi)(8))^(8)/((sin frac(pi)(8) - i cos frac(pi)(8))^(8)) is :

cos ((pi) / (8)) cos ((3 pi) / (8)) cos ((5 pi) / (8)) cos ((7 pi) / (8)) =

Simplify: [(1+ (sin pi) / (8) + i (cos pi) / (8)) / (1+ (sin pi) / (8) -i (cos pi) / (8))] ^ ((1) / (2))

[(1 + cos ((pi) / (8)) + i sin ((pi) / (8))) / (1 + cos ((pi) / (8)) - sin ((pi) / (8 )))] ^ (8) =?

Prove that cos((pi)/(8))+cos((3 pi)/(8))+cos((5 pi)/(8))+cos((7 pi)/(8))=0

Prove that: (1+cos(pi)/(8))(1+cos(3 pi)/(8))(1+cos(5 pi)/(8))(1+cos(7 pi)/(8))=(1)/(8)