Home
Class 12
MATHS
x^y = e^(x-y) so, prove that dy/dx = log...

`x^y = e^(x-y)` so, prove that `dy/dx = logx /(1+logx)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(y)=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2)).

x^(y)=e^(x-y) so,prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(logx)/((1+logx)^(2))

If ylog x=(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2))

if x^(y)=e^(x-y) then prove that (dy)/(dx)=(log_(e)x)/((1+log_(e)x)^(2))

x dy/dx+y=y^2 logx

If x^y= y^x , prove that (dy)/(dx)=((y/x-logy))/((x/y-logx))

If y = x^(x ^(x^(x ^(x.... oo) then prove that x dy/dx = y^2/(1- y logx )

x (dy)/(dx) + y = x logx

If y=x^((x^(x))) , prove that : dy/dx=x^(x+x^(x))[1/x+(1+logx)logx] .