Home
Class 12
MATHS
For any scalar p prove that =|xx^2 1+p x...

For any scalar `p` prove that `=|xx^2 1+p x^3y y^2 1+p y^3z z^2 1+p z^3|=(1+p x y z)(x-y)(y-z)(z-x)` .

Promotional Banner

Similar Questions

Explore conceptually related problems

For any scalar p prove that =|x^(2)1+px^(3)yy^(2)1+py^(3)zz^(2)1+pz^(3)|=(1+pxyz)(x-y)(y-z)(z-x)

Prove that [[x, x^2 , 1+px^3], [y, y^2, 1+py^3] ,[z, z^2, 1+pz^3]] = (1+pxyz)(x-y)(y-z)(z-x)

Show that : |x y z x^2y^2z^2x^3y^3z^3|=x y z(x-y)(y-z)(z-x)dot

Prove that x^(3)+y^(3)+z^(3)-3xyz=(1)/(2)(x+y+z)[(x-y)^(2)+(y-z)^(2)+(z-x)^(2)]

Without expanding as far as possible, prove that |{:(1,1,1),(x,y,z),(x^(3),y^(3),z^(3)):}| = (x-y)(y-z)(z-x)(x+y+z) .

Prove that |[x,y,z] , [x^2, y^2, z^2] , [yz, zx, xy]| = |[1,1,1] , [x^2, y^2, z^2] , [x^3, y^3, z^3]|

x+y-z=1 3x+y-2z=3 x-y-z=-1

If x + y + z = xyz , prove that (3x -x^(3))/ (1-3x^(2)) + (3y -y^(3))/(1- 3y^(2)) +(3z -z^(3))/(1- 3z^(2)) = (3x -x^(3))/(1-3x)^(2) * (3y- y^(3))/(1-3x)^(2)* (3z- z^(3))/(1-3z)^(2) .

If |{:(x,x^2,1+x^3),(y,y^2,1+y^3),(z, z^2,1+z^3):}|=0 then relation of x,y and z is

Prove that : =2|{:(1,1,1),(x,y,rz),(x^(2),y^(2),z^(2)):}|=(x-y)(y-z)(z-x)