Home
Class 11
MATHS
lim(x rarr1)(x^(2)-x^(2)+1) is equal to...

`lim_(x rarr1)(x^(2)-x^(2)+1)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr1)(x^(2)-1)/(x-1)

lim_(x rarr1)(x^(2)-1)/(x-1)

lim_(x rarr1)(x^(2)-2x+1)/(x^(2)-x)

lim_(x rarr1)(x^(2)+x+1)/(2x+3)

lim_(x rarr1)[x^(3)-x^(2)+1]lim_(x rarr1)[x^(3)-x^(2)+1] (iii) quad lim_(x rarr3)[x(x+1)]lim_(x rarr1)[1+x+x^(2)+....+x^(10)]

If F(x)=sqrt(9-x^(2)), then what is lim_(x rarr1)(F(x)-F(1))/(x-1) equal to

lim_(x rarr1)(1+x+[x-1]+[1-x]) is equal to x rarr1 (where [1 denotes greatest integer function)

lim_(x rarr1)(x^(2)+x sqrt(x)-2)/(x-1) is equal to

If the function f(x) satisfies lim_(x rarr1)(f(x)-2)/(x^(2)-1)=pi evaluate quad lim_(x rarr1)f(x)

lim_(x rarr1)[(x^(2)+1)/(x+100)]