Home
Class 12
MATHS
y=x+e^(x), then (d^(2)y)/(dx^(2))=...

`y=x+e^(x),` then `(d^(2)y)/(dx^(2))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(x) , then (d^(2)y)/(dx^(2)) = e^(x) .

If y = e^(x) sin x then (d^(2)y)/(dx^(2)) =

If y= x^(2) e^(x) ,then ( d^(2)y)/(dx^(2)) -(dy)/(dx) =

If y=e^(2x) , then (d^(2)y)/(dx^(2)).(d^(2)x)/(dy^(2)) is equal to

If y=x^(m)e^(nx) then (d^(2)y)/(dx^(2)) is

If y=e^(-x^2)," then "(d^(2)y)/(dx^(2))" vanishes when "x=

If y=log ((x^(2))/( e^(x))) ,then (d^(2)y)/(dx^(2)) =

If y=e^(x) sin 3x ,then (d^(2)y)/(dx^(2))=