Home
Class 12
MATHS
The value of the integral overset(pi//3)...

The value of the integral `overset(pi//3)underset(pi//6)int (1)/(1+sqrt(tan x))dx` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral overset(pi)underset(0)int log(1+cos x)dx is

int_(0)^(pi//2)(1)/(1+sqrt(tan x))dx=

Statement-1: The value of the integral int_(pi//6)^(pi//3) (1)/(sqrt(tan)x)dx is equal to (pi)/(6) Statement-2: int_(a)^(b) f(x)dx=int_(a)^(b) f(a+b-x)dx

Statement I The value of the integral int_(pi//6)^(pi//3) (dx)/(1+sqrt(tan x)) is pi/6 Statement II int_(a)^(b) f(x) dx = int_(a)^(b) f(a+b-x)dx

The value of the integral int_(pi//6)^(pi//3) (1)/(1+sqrt(tan x))dx is

Statement I: The value of the integral int_(pi//6)^(pi//3) (dx)/(1+sqrt(tanx)) is equal to (pi)/6 . Statement II: int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx

The value of the integral int_(-pi//2)^(pi//2)(sin^(2)x)/(1+e^(x))dx is