Home
Class 13
MATHS
if x^2+y^2=t-1/t and x^4+y^4=t^2+1/t^2 t...

if `x^2+y^2=t-1/t` and `x^4+y^4=t^2+1/t^2` then `x^3y(dy)/(dx)=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then x^(3)y(dy)/(dx)=(a)0(b)1(c)-1(d) non of these

if x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then x^(3)y(dy)/(dx)=?

If x^(2)+y^(2) = t +1//t and x^(4) +y^(4) = t^(2) + 1//t^(2) then (dy)/(dx) =______________

If x^(2)+y^(2)=t+(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then (dy)/(dx)=

If x^(2)+y^(2)=(t+(1)/(t)) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)), then x^(3)y(dy)/(dx)=

If x^(2) +y^(2) =t-(1)/(t) andx^(4) +y^(4) =t^(2) +(1)/( t^(2)),then (dy)/(dx) =

if x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then prove that (dy)/(dx)=(1)/(x^(3)y)

If x^(2)+y^(2)=t-(1)/(t)andx^(4)+y^(4)=t^(2)+(1)/(t_(2)), then ((dy)/(dx))_((1.1)) is…………