Home
Class 12
MATHS
The are (in sq. units ) of the region A ...

The are (in sq. units ) of the region `A = { (x,y):(x - 1) [x] lt= y lt= 2 sqrtx , 0 lt= x lt= 2 ]`
where [t] denotes the greatest integer function is

Promotional Banner

Similar Questions

Explore conceptually related problems

The area (in sq. units ) of the region A = { (x,y):(x - 1) [x] lt= y lt= 2 sqrtx , 0 lt= x lt= 2 ] where [t] denotes the greatest integer function is

If f(x)= {(|1-4x^2|,; 0 lt= x lt 1), ([x^2-2x],; 1 lt= x lt 2):} , where [.] denotes the greatest integer function, then f(x) is

If f(x)={{:(,x[x], 0 le x lt 2),(,(x-1)[x], 2 le x lt 3):} where [.] denotes the greatest integer function, then

Let f(x)=(x^(2)+1)/([x]),1 lt x le 3.9.[.] denotes the greatest integer function. Then

lt_(x rarr0)[(sin|x|)/(x)]= where [^(*)] denotes greater integer function )

Let f(x)=1+|x|, x lt -1 [x], x ge -1 , where [.] denotes the greatest integer function. Then f{f(-2,3)} is equal to

Area of the region bounded by [x] ^(2) =[y] ^(2), if x in [1,5] , where [ ] denotes the greatest integer function is:

If f(x) = {{:(|1-4x^(2)|",",0 le x lt 1),([x^(2)-2x]",",1 le x lt 2):} , where [] denotes the greatest integer function, then

If f (x) = cos (x ^(2) -4[x]), 0 lt x lt 1, (whre [.] denotes greatest integer function) then f '((sqrtpi)/(2)) is equal to: