Home
Class 12
MATHS
int0^(pi/2)(2logcosx-logsin2x) dx...

`int_0^(pi/2)(2logcosx-logsin2x) dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int_0^(pi/2) (2logsinx-logsin2x)dx

Evaluate: int_0^(pi//2)(2logsinx-logsin2x)dx

Prove that int_(0)^(pi//2)(2logsinx-logsin2x)dx=(pi)/(2)(log2) .

int_(0)^(pi//2) (2logsin x - log sin 2x) dx=

Evaluate: int_0^(pi//2) e^x (sinx-cosx) dx

Prove that: int_0^(pi//2)logsinx\ dx=\ int_0^(pi//2)logcosx\ dx=-pi/2log2

int_0^(pi/2) sin x dx

Evaluate: int_0^pi x/(a^2cos^2x+b^2sin^2x)dx

If int_(0)^(pi//2) log(cosx) dx=pi/2 log (1/2), then int_(0) ^(pi//2) log (sec x ) dx =