Home
Class 12
MATHS
If f(x)=-(x|x|)/(1+x^(2))" then "f^(-1)x...

If `f(x)=-(x|x|)/(1+x^(2))" then "f^(-1)x` equals :

Promotional Banner

Similar Questions

Explore conceptually related problems

If f:R rarr(-1,1) is defined by f(x)=-(x|x|)/(1+x^(2)), then f^(-1)(x) equals sqrt((|x|)/(1-|x|)(b)-sgn(x)sqrt((|x|)/(1-|x|))-sqrt((x)/(1-x))(d)) none of these

" If f(x)=(x)/(1+x) then f^(-1)(x) is equal to

If f : R - {1} rarr R, f(x) = (x-3)/(x+1) , then f^(-1) (x) equals

If f(x)=x^(2)-x^(-2) then f((1)/(x)) is equal to

If f(x)=x^(2)-x^(-2) then f((1)/(x)) is equal to

If f(x) =(x-4)/(2sqrt(x)) , then f^(')(1) is equal to

Let f(x)=(x^(2)-x)/(x^(2)+2x) then d(f^(-1)x)/(dx) is equal to

If f : [1, oo) rarr [2, oo) is given by f(x) = x + (1)/(x) then f^(-1) (x) equals:

If f(x)=(4^(x))/(4^(x)+2) then f(x)+f(1-x) is equal to

If f(x)=cot^(-1)((x^(x)-x^(-x))/(2)) then f'(1) equals