Home
Class 12
MATHS
Prove that : tan^(-1)1/5+tan^(-1)1/7+ta...

Prove that : `tan^(-1)1/5+tan^(-1)1/7+tan^(-1)1/3+tan^(-1)1/8=pi/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1)1/7+tan^(-1)1/(13)=tan^(-1)2/9

Prove that : tan^(-1)1+tan^(-1)2+tan^(-1)3=pi

Prove that 2(tan^(-1)1/4+tan^(-1)2/9)=tan^(-1)4/3 .

tan^(-1)7-tan^(-1)5=tan^(-1)(1/18)

tan^(-1)7-tan^(-1)5=tan^(-1)(1)/(18)

Prove that tan^(-1) (1/8) +tan^(-1) (1/5) =tan^(-1) (1/3)

Prove that: tan^(-1)1+tan^(-1)2+tan^(-1)3=pi

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

tan^(-1)3-tan^(-1)2=tan^(-1)(1/7)

tan^(-1)3-tan^(-1)2=tan^(-1)(1/7)