Home
Class 12
MATHS
tan^(-1)((2x)/(x^(2)-1))+cot^(-1)((x^(2)...

`tan^(-1)((2x)/(x^(2)-1))+cot^(-1)((x^(2)-1)/(2x))=-(4 pi)/(3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following equation for x:tan^(-1)((2x)/(1-x^(2)))+cot^(-1)((1-x^(2))/(2x))=(2 pi)/(3),x>0

If tan^(-1)((2x)/(1-x^(2)))+cot^(-1)((1-x^(2))/(2x))=(pi)/(3),x in(0,1), then (x^(4)+(1)/(x^(4))) is equal to

Solve for x:tan^(-1)((2x)/(1-x^(2)))+cot^(-1)((1-x^(2))/(2x))=(pi)/(3),-1

tan^(-1)((2x)/(1-x^2))+cot^(-1)((1-x^2)/(2x))=pi/3

Prove that: tan^(-1)((1-x^(2))/(2x))+cot^(-1)((1-x^(2))/(2x))=(pi)/(2)

Solve for x:tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=(pi)/(4)

Solve for x : tan^(-1)(2x)/(1-x^(2))+cot^(-1)(1-x^(2))/(2x))=pi/3, -1 lt x lt 1 .

If tan^(-1)((x-1)/(x-2))+cot^(-1)((x+2)/(x+1))=(pi)/(4) , find x.

Find the value of tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

Solve : tan^(-1) ((x-1) /( x-2))-tan^(-1)((x+1)/(x+2))=(pi)/(4) ,