Home
Class 11
MATHS
lim(x rarr e)(log x-1)/(x-e)=(1)/(e)...

`lim_(x rarr e)(log x-1)/(x-e)=(1)/(e)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Lim_(x rarre)(log x-1)/(x-e)=

Evaluate: (lim)_(x rarr e)(log x-1)/(x-e)

lim_ (x rarr e) (ln x-1) / (xe)

Evaluate : lim_(x rarr e)(log_(e)x-1)/(x-1)

the value of lim_(x rarr e)(log x-1)/(x-e) equals to

Find the value of lim_(x rarr e)(log_(e)x)/(x-e)

lim_(x rarr e^+)(lnx)^(1/(x-e)) is

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(e^(sin x)-1)/(x)