Home
Class 12
MATHS
The value of the lim(x rarr0)(root(3)(1-...

The value of the `lim_(x rarr0)(root(3)(1-2x)-root(4)(1+x^(2)))/(x^(2)+x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(root(4)(1+x)-root(4)(1-x))/(x)=

lim_(x rarr0)(root(3)(1+x)-root(3)(1-x))/(x)

lim_(x rarr0)(root(3)(1+x)-1)/(x)

lim_(x rarr0)(root(3)(1+x^(2))-root(4)(1-2x))/(x+x^(2)) is equal to

value of lim_(x rarr0)(root(3)(1+tan x)-root(3)(1-tan x))/(x) is

lim_(x rarr0)(2x+3)=3

lim_(x rarr0)(sqrt(1-x^(2))-sqrt(1+x^(2)))/(2x^(2))

lim_(x rarr0)x^(3)cos(2/x)=

lim_(x rarr0)x^(3)cos(2/x)=

lim_(x rarr0)(sqrt(x+4)-2)/(x)