Home
Class 12
MATHS
tan^(-1)((3x-x^(3))/(1-3x^(2)))...

`tan^(-1)((3x-x^(3))/(1-3x^(2)))`

Promotional Banner

Similar Questions

Explore conceptually related problems

y=tan^(-1)""(3x-x^(3))/(2x^(2)-1),-(1)/(sqrt(3))ltxlt(1)/(sqrt(3))

tan^(-1)((sqrt(x)(3-x))/(1-3x))

Let tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^(2))) where |x|<(1)/(sqrt(3))* Then a value of y is : (1)(3x-x^(3))/(1-3x^(2))(2)(3x+x^(3))/(1-3x^(2))(3)(3x-x^(3))/(1+3x^(2))(4)(3x+x^(3))/(1+3x^(2))

Prove that tan^(-1)""(3a^(2)x-x^(3))/(a^(3)-3ax^(2))=3tan^(-1)""x/a .

Derivative of tan ^(-1) ""((x)/(sqrt(1-x^(2)))) with respect sin ^(-1) ( 3x - 4x^(3)) is

Derivative of tan^(-1)((x)/(sqrt( 1 - x^(2)))) with respect to sin^(-1) (3x - 4x^(3)) is

Find (dy)/(dx) if y=tan^(-1)((4x)/(1+5x^(2)))+tan^(-1)((2+3x)/(3-2x))

Find (dy)/(dx) if y=tan^(-1)(4x)/(1+5x^(2))+tan^(-1)(2+3x)/(3-2x)

tan x+tan(x+(pi)/(3))+tan(x+2(pi)/(3))=3 prove that (3tan x-tan^(3)x)/(1-3tan^(2)x)=1

If tan x+tan(x+(pi)/(3))+tan(x+(2 pi)/(3))=3 then prove that (3tan x-tan^(3)x)/(1-3tan^(2)x)=1