Home
Class 12
MATHS
If sin^(- 1)x+sin^(- 1)y=pi/2, then prov...

If `sin^(- 1)x+sin^(- 1)y=pi/2,` then prove that `sin^-1 x = cos^-1 y.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1)x+cos^(-1)y=pi/2 then prove that cos^(-1)x=sin^(-1)y

If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y

If sin ^(-1) x + sin ^(-1) y = (pi)/(6) , then cos^(-1) x + cos ^(-1) y =?

If sin^(-1) x + sin^(-1) y = pi/2 , prove that x sqrt(1-x^2) + y sqrt(1-y^2) =1 .

If sin^(-1)x +sin^(-1)y =pi then cos^(-1)x +cos^(-1)y is :

If sin^(-1) x + sin^(-1)y = pi//2 and cos^(-1) x - cos^(-1) y = 0 , then value x and y respectively

If sin^(-1)x+sin^(-1)y=(2 pi)/(3) ,then the value of cos^(-1)x+cos^(-1)y is (A) (2 pi)/(3) (B) (pi)/(3) (C) (pi)/(2) (D) pi

If sin^(-1)x+sin^(-1)y=(2pi)/3 , then cos^(-1)x+cos^(-1)y is equal to