Home
Class 8
MATHS
Evaluate : (i) (3)/(4)+(5)/(6)+(-1)/(4...

Evaluate :
(i) `(3)/(4)+(5)/(6)+(-1)/(4)+(-7)/(6)`
(ii) `(9)/(-10)+(4)/(15)+(-3)/(20)+(-3)/(10)+(8)/(15)+(9)/(-20)`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given problems step by step. ### Part (i): Evaluate \( \frac{3}{4} + \frac{5}{6} + \left(-\frac{1}{4}\right) + \left(-\frac{7}{6}\right) \) **Step 1: Identify the fractions.** We have the fractions: \( \frac{3}{4}, \frac{5}{6}, -\frac{1}{4}, -\frac{7}{6} \). **Step 2: Find the LCM of the denominators.** The denominators are 4 and 6. The LCM of 4 and 6 is 12. **Step 3: Convert each fraction to have a common denominator of 12.** - For \( \frac{3}{4} \): \[ \frac{3}{4} = \frac{3 \times 3}{4 \times 3} = \frac{9}{12} \] - For \( \frac{5}{6} \): \[ \frac{5}{6} = \frac{5 \times 2}{6 \times 2} = \frac{10}{12} \] - For \( -\frac{1}{4} \): \[ -\frac{1}{4} = -\frac{1 \times 3}{4 \times 3} = -\frac{3}{12} \] - For \( -\frac{7}{6} \): \[ -\frac{7}{6} = -\frac{7 \times 2}{6 \times 2} = -\frac{14}{12} \] **Step 4: Rewrite the expression with the common denominator.** Now we can rewrite the expression: \[ \frac{9}{12} + \frac{10}{12} - \frac{3}{12} - \frac{14}{12} \] **Step 5: Combine the fractions.** Combine the numerators: \[ \frac{9 + 10 - 3 - 14}{12} = \frac{2}{12} \] **Step 6: Simplify the fraction.** \[ \frac{2}{12} = \frac{1}{6} \] ### Answer for Part (i): \[ \frac{1}{6} \] --- ### Part (ii): Evaluate \( \frac{9}{-10} + \frac{4}{15} + \left(-\frac{3}{20}\right) + \left(-\frac{3}{10}\right) + \frac{8}{15} + \frac{9}{-20} \) **Step 1: Identify the fractions.** The fractions are \( \frac{9}{-10}, \frac{4}{15}, -\frac{3}{20}, -\frac{3}{10}, \frac{8}{15}, \frac{9}{-20} \). **Step 2: Find the LCM of the denominators.** The denominators are 10, 15, and 20. The LCM of 10, 15, and 20 is 60. **Step 3: Convert each fraction to have a common denominator of 60.** - For \( \frac{9}{-10} \): \[ \frac{9}{-10} = \frac{9 \times 6}{-10 \times 6} = \frac{54}{-60} \] - For \( \frac{4}{15} \): \[ \frac{4}{15} = \frac{4 \times 4}{15 \times 4} = \frac{16}{60} \] - For \( -\frac{3}{20} \): \[ -\frac{3}{20} = -\frac{3 \times 3}{20 \times 3} = -\frac{9}{60} \] - For \( -\frac{3}{10} \): \[ -\frac{3}{10} = -\frac{3 \times 6}{10 \times 6} = -\frac{18}{60} \] - For \( \frac{8}{15} \): \[ \frac{8}{15} = \frac{8 \times 4}{15 \times 4} = \frac{32}{60} \] - For \( \frac{9}{-20} \): \[ \frac{9}{-20} = \frac{9 \times 3}{-20 \times 3} = \frac{27}{-60} \] **Step 4: Rewrite the expression with the common denominator.** Now we can rewrite the expression: \[ \frac{54}{-60} + \frac{16}{60} - \frac{9}{60} - \frac{18}{60} + \frac{32}{60} + \frac{27}{-60} \] **Step 5: Combine the fractions.** Combine the numerators: \[ \frac{54 - 9 - 18 + 16 + 32 - 27}{60} = \frac{48}{60} \] **Step 6: Simplify the fraction.** \[ \frac{48}{60} = \frac{4}{5} \] ### Answer for Part (ii): \[ \frac{4}{5} \] ---
Promotional Banner

Topper's Solved these Questions

  • RATIONAL NUMBERS

    ICSE|Exercise Exercise 1(A)|49 Videos
  • RATIONAL NUMBERS

    ICSE|Exercise Exercise 1(B)|22 Videos
  • PROFIT, LOSS AND DISCOUNT

    ICSE|Exercise EXERCISE 8F|9 Videos
  • REPRESENTING 3-D IN 2 -D

    ICSE|Exercise EXCERSICE|13 Videos

Similar Questions

Explore conceptually related problems

Simplify: (-3)/(10)+7/(15)+3/(-20)+(-9)/(10)+(13)/(15)+(13)/(-20)

Find: 3+1(4)/(15)+3/(20)

Find the sum : (i) 5/4 + ((-11)/(4)) , (ii) 5/3 + 3/5 , (iii) (-9)/(10) + 22/15 (iv) (-3)/(-11) + 5/9 , (v) (-8)/(19) + ((-2))/(57) , (vi) (-2)/(3) + 0 (vii) -2'1/3 + 4'3/5

(i) 1/4 of (a) 1/4 (b) 3/5 (c) 4/3 (ii) 1/7 of (a) 2/9 (b) 6/5 (c) 3/10

Write four more rational numbers in each of the following patterns : (i) (-3)/5 , (-6)/10 , (-9)/15 , (-12)/20,..... (ii) (-1)/4 , (-2)/8, (-3)/12,...... (iii) (-1)/6, 2/(-12), 3/(-18), 4/(-24),....... (iv) (-2)/3 , 2/(-3) , 4/(-6), 6/-9,.......

Find (i) 1/2 of (ii) (2) 3/4 (iii) (4) 2/9 (iv) 5/8 of (v) (3) 5/6 (ii) (9) 2/3

Evaluate: (i) 5/6-7/8 , (ii) 5/12 -17/18 , (iii) 11/15 - 13/20 , (iv) -5/9 - (-2/3) , (v) 6/11 -(-3/4) , (vi) -2/3 -3/4

Factorise : (i) 10a^(4) x^(2) - 15a^(6) x^(4) + 20 a^(7) x^(5)

Simplify: (i) ((13)/9xx(-15)/2)+(7/3xx8/5)+(3/5xx1/2) (ii) (3/(11)xx5/6)-(9/(12)xx4/3)+(5/(13)xx6/(15))

Evaluate: (i) 2/(-3) + -4/9 , (ii) =1/2 + -3/4 , (iii) 7/-9 + -5/6 (iv) 2 + -3/4 , (v) 3 + -5/6 , (vi) -4 + 2/3