Home
Class 8
MATHS
Evaluate : sqrt(5(2(3)/(4) - (3)/(10...

Evaluate :
`sqrt(5(2(3)/(4) - (3)/(10)))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \sqrt{5 \left( 2 \left( \frac{3}{4} \right) - \frac{3}{10} \right)} \), we will follow these steps: ### Step 1: Simplify the expression inside the square root We start with the expression: \[ \sqrt{5 \left( 2 \left( \frac{3}{4} \right) - \frac{3}{10} \right)} \] ### Step 2: Calculate \( 2 \left( \frac{3}{4} \right) \) To calculate \( 2 \left( \frac{3}{4} \right) \): \[ 2 \times \frac{3}{4} = \frac{6}{4} = \frac{3}{2} \] ### Step 3: Substitute back into the expression Now substitute \( \frac{3}{2} \) back into the expression: \[ \sqrt{5 \left( \frac{3}{2} - \frac{3}{10} \right)} \] ### Step 4: Find a common denominator to subtract the fractions The common denominator of \( 2 \) and \( 10 \) is \( 10 \). Convert \( \frac{3}{2} \) to have a denominator of \( 10 \): \[ \frac{3}{2} = \frac{15}{10} \] Now we can subtract: \[ \frac{15}{10} - \frac{3}{10} = \frac{12}{10} = \frac{6}{5} \] ### Step 5: Substitute back into the expression Now substitute \( \frac{6}{5} \) back into the expression: \[ \sqrt{5 \left( \frac{6}{5} \right)} \] ### Step 6: Simplify the expression Now simplify: \[ \sqrt{5 \times \frac{6}{5}} = \sqrt{6} \] ### Step 7: Final result The final result is: \[ \sqrt{6} \]
Promotional Banner

Topper's Solved these Questions

  • SQUARES AND SQUARE ROOTS

    ICSE|Exercise Exercise3 (B)|27 Videos
  • SQUARES AND SQUARE ROOTS

    ICSE|Exercise Exercise3 (C )|16 Videos
  • SQUARES AND SQUARE ROOTS

    ICSE|Exercise Exercise3 (C )|16 Videos
  • SPECIAL TYPES OF QUADRILATERALS

    ICSE|Exercise EXERCISE|22 Videos
  • SURFACE AREA, VOLUME AND CAPACITY.

    ICSE|Exercise EXERCISE ( E ) |11 Videos

Similar Questions

Explore conceptually related problems

Evaluate : (i) ((2)/(-3)xx(5)/(4))+((5)/(9)xx(3)/(-10))

Evaluate: int4x^3sqrt(5-x^2)dx

Expand (x+y)^(4)-(x-y)^(4) . Hence find the value of (3+sqrt(5))^(4) -(3-sqrt(5))^(4) .

(i) If x = (6ab)/(a + b) , find the value of : (x + 3a)/(x - 3a) + (x + 3b)/(x - 3b) . (ii) a = (4sqrt(6))/(sqrt(2) + sqrt(3)) , find the value of : (a + 2sqrt(2))/(a - 2sqrt(2)) + (a + 2sqrt(3))/(a - 2sqrt(3)) .

Evaluate: intdx/((2x+3)sqrt(4x+5))

Evaluate : (4+3sqrt(-20))^(1//2)+(4-3 sqrt(-20))^(1//2)

Find (x+a)^(3)-(x-a)^(3) . Hence evaluate (sqrt(5)+sqrt(4))^(3)-(sqrt(5)-sqrt(4))^(3)

Evaluate the following: \ (3+sqrt(2))^5-(3-sqrt(2))^5

Find (a+b)^4-(a-b)^4dot Hence evaluate (sqrt(3)+sqrt(2))^4-(sqrt(3)-sqrt(2))^4

Find (a+b)^4-(a-b)^4 . Hence, evaluate (sqrt(3)+sqrt(2))^4-(sqrt(3)-sqrt(2))^4 .