Home
Class 8
MATHS
Evaluate : sqrt(248 + sqrt(52 + sqrt...

Evaluate :
`sqrt(248 + sqrt(52 + sqrt(144)))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \sqrt{248 + \sqrt{52 + \sqrt{144}}} \), we will simplify it step by step. ### Step 1: Simplify \( \sqrt{144} \) We know that: \[ \sqrt{144} = 12 \] So we can rewrite the expression as: \[ \sqrt{248 + \sqrt{52 + 12}} \] ### Step 2: Simplify \( \sqrt{52 + 12} \) Now, calculate \( 52 + 12 \): \[ 52 + 12 = 64 \] Thus, we have: \[ \sqrt{52 + 12} = \sqrt{64} = 8 \] Now, we can rewrite the expression again: \[ \sqrt{248 + 8} \] ### Step 3: Simplify \( 248 + 8 \) Next, calculate \( 248 + 8 \): \[ 248 + 8 = 256 \] So now we have: \[ \sqrt{256} \] ### Step 4: Calculate \( \sqrt{256} \) Finally, we know that: \[ \sqrt{256} = 16 \] ### Final Answer Thus, the value of \( \sqrt{248 + \sqrt{52 + \sqrt{144}}} \) is: \[ \boxed{16} \]
Promotional Banner

Topper's Solved these Questions

  • SQUARES AND SQUARE ROOTS

    ICSE|Exercise Exercise3 (B)|27 Videos
  • SQUARES AND SQUARE ROOTS

    ICSE|Exercise Exercise3 (C )|16 Videos
  • SQUARES AND SQUARE ROOTS

    ICSE|Exercise Exercise3 (C )|16 Videos
  • SPECIAL TYPES OF QUADRILATERALS

    ICSE|Exercise EXERCISE|22 Videos
  • SURFACE AREA, VOLUME AND CAPACITY.

    ICSE|Exercise EXERCISE ( E ) |11 Videos

Similar Questions

Explore conceptually related problems

Evaluate the sqrt(4+sqrt(144))

Evaluate the sqrt(20-sqrt(16))

Evaluate: sqrt(-2+2sqrt(3)i)

Evaluate : (1)/(3-sqrt(8)) -(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2).

Evaluate : int (sqrt(1-sqrt(x)))/(sqrt(1+sqrt(x)))dx

Evaluate : (i)sqrt(3-2sqrt(2))" "(ii)sqrt(9+6sqrt(2))

Find the value of :- (i) sqrt(4) (ii) sqrt(9) (iii) sqrt(16) (iv)sqrt(36)

Evaluate : (15)/(sqrt(10)+sqrt(20)+sqrt(40)-sqrt(5)-sqrt(80)), is being given that sqrt(5)=2. 236 and sqrt(10)=3. 1362

Evaluate : (15)/(sqrt(10)+sqrt(20)+sqrt(40)-sqrt(5)-sqrt(80)), is being given that sqrt(5)=2. 236 and sqrt(10)=3.1362

Evaluate: log_(2sqrt(3))144