Home
Class 8
MATHS
Evaluate : (iii) (4a - 3b) (2a + 5b)...

Evaluate : (iii) `(4a - 3b) (2a + 5b)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \((4a - 3b)(2a + 5b)\), we will use the distributive property (also known as the FOIL method for binomials). Here’s a step-by-step solution: ### Step 1: Distribute the first term of the first binomial Multiply \(4a\) by each term in the second binomial \((2a + 5b)\): \[ 4a \cdot 2a = 8a^2 \] \[ 4a \cdot 5b = 20ab \] ### Step 2: Distribute the second term of the first binomial Now, multiply \(-3b\) by each term in the second binomial \((2a + 5b)\): \[ -3b \cdot 2a = -6ab \] \[ -3b \cdot 5b = -15b^2 \] ### Step 3: Combine all the results Now, we combine all the terms we calculated: \[ 8a^2 + 20ab - 6ab - 15b^2 \] ### Step 4: Combine like terms Combine the \(ab\) terms: \[ 20ab - 6ab = 14ab \] So, the expression simplifies to: \[ 8a^2 + 14ab - 15b^2 \] ### Final Answer The evaluated expression is: \[ 8a^2 + 14ab - 15b^2 \] ---
Promotional Banner

Topper's Solved these Questions

  • IDENTITIES

    ICSE|Exercise EXERCISE 12(A)|40 Videos
  • IDENTITIES

    ICSE|Exercise EXERCISE 12(B)|36 Videos
  • FACTORISATION

    ICSE|Exercise EXERCISE 13(F)|49 Videos
  • INTEREST (SIMPLE AND COMPOUND)

    ICSE|Exercise EXERCISE 9(C)|39 Videos

Similar Questions

Explore conceptually related problems

Evaluate : (iii) (2a - b) ( 2a + b) (4a^2 + b^2)

Evaluate : (ii) (2a - 5b) ( 2a + 5b) ( 4a^2 + 25b^2)

Evaluate : (ix) (2a - 3b) (3a + 4b)

Evaluate : (iii) ((a)/(2b ) + (2b )/( a) ) ( ( a)/( 2b ) - (2b)/( a))

Evaluate : (i) (a+6b)^(2) " " (ii) (3x-4y)^(2) " " (iii) (2a-b+c)^(2)

Evaluate: (4a-5b)^(3)

Evaluate : 3b^(4) when b=2

Evaluate : (i) ((a)/(2b)+(2b)/(a))^(2)-((a)/(2b)-(2b)/(a))^(2)-4 (ii) (4a+3b)^(2)-(4a-3b)^(2)+48ab

Evaluate : (i) (cos 3A - 2 cos 4A)/(sin 3 A + 2 sin 4A) , when A = 15^(@) (ii) (3 sin 3B + 2 cos(2B + 5^(@)))/(2 cos 3B - sin(2B - 10^(@))) , when B = 20^(@)

Factorise : (ii) 25 (a - 5b)^2 - 4 (a - 3b)^2