Home
Class 8
MATHS
Evaluate : (ii) (2a - 5b) ( 2a + 5b) ( 4...

Evaluate : (ii) `(2a - 5b) ( 2a + 5b) ( 4a^2 + 25b^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \((2a - 5b)(2a + 5b)(4a^2 + 25b^2)\), we can follow these steps: ### Step 1: Apply the difference of squares identity We recognize that \((2a - 5b)(2a + 5b)\) can be simplified using the identity \( (x - y)(x + y) = x^2 - y^2 \). Here, let \( x = 2a \) and \( y = 5b \). Therefore, we have: \[ (2a - 5b)(2a + 5b) = (2a)^2 - (5b)^2 \] ### Step 2: Calculate the squares Now we calculate the squares: \[ (2a)^2 = 4a^2 \quad \text{and} \quad (5b)^2 = 25b^2 \] Thus, \[ (2a - 5b)(2a + 5b) = 4a^2 - 25b^2 \] ### Step 3: Substitute back into the expression Now we substitute this result back into the original expression: \[ (4a^2 - 25b^2)(4a^2 + 25b^2) \] ### Step 4: Apply the difference of squares identity again We can again apply the difference of squares identity: Let \( A = 4a^2 \) and \( B = 25b^2 \). Then: \[ (4a^2 - 25b^2)(4a^2 + 25b^2) = A^2 - B^2 \] ### Step 5: Calculate \( A^2 \) and \( B^2 \) Now we calculate: \[ A^2 = (4a^2)^2 = 16a^4 \quad \text{and} \quad B^2 = (25b^2)^2 = 625b^4 \] Thus, \[ (4a^2 - 25b^2)(4a^2 + 25b^2) = 16a^4 - 625b^4 \] ### Final Answer The final result of the evaluation is: \[ 16a^4 - 625b^4 \] ---
Promotional Banner

Topper's Solved these Questions

  • IDENTITIES

    ICSE|Exercise EXERCISE 12(A)|40 Videos
  • IDENTITIES

    ICSE|Exercise EXERCISE 12(B)|36 Videos
  • FACTORISATION

    ICSE|Exercise EXERCISE 13(F)|49 Videos
  • INTEREST (SIMPLE AND COMPOUND)

    ICSE|Exercise EXERCISE 9(C)|39 Videos

Similar Questions

Explore conceptually related problems

Evaluate : (iii) (2a - b) ( 2a + b) (4a^2 + b^2)

Evaluate : (iii) (4a - 3b) (2a + 5b)

Evaluate : (ii) (a+b) (a-b) (a^2 + b^2)

Expand : (ii) (2a - 5b - 4c)^2

Factorise : (ii) a^2 - (b+5) a + 5b

Factorise : (ii) 25 (a - 5b)^2 - 4 (a - 3b)^2

Evaluate : b^(2)y - 9b^(2)y + 2b^(2)y - 5b^(2)y

Evaluate : (i) ((a)/(2b)+(2b)/(a))^(2)-((a)/(2b)-(2b)/(a))^(2)-4 (ii) (4a+3b)^(2)-(4a-3b)^(2)+48ab

Expand : (i) (4a-5b)^(3) " " (ii) (a+2b)^(3)

Evaluate : (i) (cos 3A - 2 cos 4A)/(sin 3 A + 2 sin 4A) , when A = 15^(@) (ii) (3 sin 3B + 2 cos(2B + 5^(@)))/(2 cos 3B - sin(2B - 10^(@))) , when B = 20^(@)