Home
Class 8
MATHS
Use of the formula (a+b) (a-b) = a^(2) -...

Use of the formula `(a+b) (a-b) = a^(2) - b^(2)` to find the value of : (i) `107 xx 93`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem using the identity \((a+b)(a-b) = a^2 - b^2\), we can follow these steps: ### Step-by-Step Solution: 1. **Identify \(a\) and \(b\)**: - We can express \(107\) and \(93\) in a form that fits the identity. - Let \(a = 100\) and \(b = 7\). - Thus, we can write: - \(107 = a + b = 100 + 7\) - \(93 = a - b = 100 - 7\) 2. **Apply the Identity**: - According to the identity, we have: \[ (a + b)(a - b) = a^2 - b^2 \] - Substituting our values: \[ (100 + 7)(100 - 7) = 100^2 - 7^2 \] 3. **Calculate \(a^2\) and \(b^2\)**: - Calculate \(100^2\): \[ 100^2 = 10000 \] - Calculate \(7^2\): \[ 7^2 = 49 \] 4. **Subtract \(b^2\) from \(a^2\)**: - Now, substitute back into the equation: \[ 100^2 - 7^2 = 10000 - 49 \] - Perform the subtraction: \[ 10000 - 49 = 9951 \] 5. **Final Answer**: - Therefore, the value of \(107 \times 93\) is: \[ \boxed{9951} \]
Promotional Banner

Topper's Solved these Questions

  • IDENTITIES

    ICSE|Exercise EXERCISE 12(A)|40 Videos
  • IDENTITIES

    ICSE|Exercise EXERCISE 12(B)|36 Videos
  • FACTORISATION

    ICSE|Exercise EXERCISE 13(F)|49 Videos
  • INTEREST (SIMPLE AND COMPOUND)

    ICSE|Exercise EXERCISE 9(C)|39 Videos

Similar Questions

Explore conceptually related problems

Use of the formula (a+b) (a-b) = a^(2) - b^(2) to find the value of : (ii) 30.8 xx 29.2

Use the formula : (a+b) (a-b) = a^(2) - b^(2) to evaluate : (iii) 103 xx 97

Use the formula : (a+b) (a-b) = a^(2) - b^(2) to evaluate : (iv) 9.8 xx 10.2

Use the formula : (a+b) (a-b) = a^(2) - b^(2) to evaluate : (vi) 4.6 xx 5.4

Use the formula : (a+b) (a-b) = a^(2) - b^(2) to evaluate : (ii) 33 xx 27

Use the formula : (a+b) (a-b) = a^(2) - b^(2) to evaluate : (I) 21 xx 19

Use the formula : (a+b) (a-b) = a^(2) - b^(2) to evaluate : (v) 7.7 xx 8.3

If a-b=5 and a b=12 , find the value of a^2+b^2

If a+b=7 and a b=12 , find the value of (a^2-a b+b^2)

If a+b=7 and a b=12 , find the value of (a^2-a b+b^2)