Home
Class 12
MATHS
Consider the functions f (x) and g (x), ...

Consider the functions `f (x) and g (x)`, both defined from `R-> R` and are defined as `f(x)=2x-x^2 and g (x)=x^n` wherc `n in N`. Ifthe area between `f(x) and g (x)` in first quadrant is `1/2` then n is a divisor of (A)12 (B) 15 (C) 20 (D)30

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the functions f(x) and g(x), both defined from R rarrR and are defined as f(x)=2x-x^(2) and g(x)=x^(n) where n in N . If the area between f(x) and g(x) is 1/2, then the value of n is

Consider the functions f(x) and g(x), both defined from R rarrR and are defined as f(x)=2x-x^(2) and g(x)=x^(n) where n in N . If the area between f(x) and g(x) is 1/2, then the value of n is

Consider the functions f(x) and g(x), both defined from R rarrR and are defined as f(x)=2x-x^(2) and g(x)=x^(n) where n in N . If the area between f(x) and g(x) is 1/2, then the value of n is

Consider the functions f(x) and g(x), both defined from R rarrR and are defined as f(x)=2x-x^(2) and g(x)=x^(n) where n in N . If the area between f(x) and g(x) is 1/2, then the value of n is

IF f:R to R,g:R to R are defined by f(x)=3x-1 and g(x)=x^2+1 , then find (fog)(2)

If f: R to R and g: R to R are defined by f(x) =x-[x] and g(x) =[x] AA x in R, f(g(x)) =

Consider the function f (x) and g (x), both defined from R to R f (x) = (x ^(3))/(2 )+1 -x int _(0)^(x) g (t) dt and g (x) =x - int _(0) ^(1) f (t) dt, then minimum value of f (x) is:

f and g are functions defined from R rarr R If f(x-2)=x^(2) and g(x)=(x+2)^(2) then f(x)+g(x-2)=?

If f:R to R , g:R to R are defined by f(x) = 3x-1 and g(x) = x^(2) + 1 then find (fog)(2) .

Consider the function f (x) and g (x), both defined from R to R f (x) = (x ^(3))/(2 )+1 -x int _(0)^(x) g (t) dt and g (x) =x - int _(0) ^(1) f (t) dt, then The number of points of intersection of f (x) and g (x) is/are: