Home
Class 8
MATHS
Expand : (i) (2x + (1)/( 2x))^2...

Expand : (i) `(2x + (1)/( 2x))^2`

Text Solution

AI Generated Solution

The correct Answer is:
To expand the expression \((2x + \frac{1}{2x})^2\), we will use the algebraic identity for the square of a binomial, which states that: \[ (a + b)^2 = a^2 + 2ab + b^2 \] ### Step-by-Step Solution: 1. **Identify \(a\) and \(b\)**: - Let \(a = 2x\) - Let \(b = \frac{1}{2x}\) 2. **Apply the identity**: Using the identity \((a + b)^2 = a^2 + 2ab + b^2\), we can expand the expression: \[ (2x + \frac{1}{2x})^2 = (2x)^2 + 2(2x)(\frac{1}{2x}) + \left(\frac{1}{2x}\right)^2 \] 3. **Calculate each term**: - Calculate \(a^2\): \[ (2x)^2 = 4x^2 \] - Calculate \(2ab\): \[ 2(2x)(\frac{1}{2x}) = 2 \cdot 2 \cdot \frac{1}{2} = 2 \] - Calculate \(b^2\): \[ \left(\frac{1}{2x}\right)^2 = \frac{1}{4x^2} \] 4. **Combine the terms**: Now, substitute back into the expanded form: \[ (2x + \frac{1}{2x})^2 = 4x^2 + 2 + \frac{1}{4x^2} \] 5. **Final expression**: The final expanded expression is: \[ 4x^2 + 2 + \frac{1}{4x^2} \] ### Final Answer: \[ (2x + \frac{1}{2x})^2 = 4x^2 + 2 + \frac{1}{4x^2} \]
Promotional Banner

Topper's Solved these Questions

  • IDENTITIES

    ICSE|Exercise EXERCISE 12(A)|40 Videos
  • IDENTITIES

    ICSE|Exercise EXERCISE 12(B)|36 Videos
  • FACTORISATION

    ICSE|Exercise EXERCISE 13(F)|49 Videos
  • INTEREST (SIMPLE AND COMPOUND)

    ICSE|Exercise EXERCISE 9(C)|39 Videos

Similar Questions

Explore conceptually related problems

Expand : (viii) (2x - (1)/( 2x ) )^2

Expand : (vii) (3x + (1)/( 3x) )^2

Expand : (i) (3x + 2)^3

Expand : (i) (2a + b)^2

Expand : (2x- y + 2)^(3)

Expand : (i) (3x - 4y +5z)^2

Expand (i) ((2x)/3-(3)/(2x))^(6) , (ii) (2/x-x/2)^(5)

If 2x - (1)/(2x) =4 , find : (i) 4x^(2) + (1)/( 4x^2)

Expand |(7x,6), (2x, 1)|

Evaluate : (i) (3x + (1)/(2) ) (2x + (1)/(3) )