Home
Class 8
MATHS
Expand : (ii) (3a - (1)/( a) )^2...

Expand : (ii) `(3a - (1)/( a) )^2`

Text Solution

AI Generated Solution

The correct Answer is:
To expand the expression \((3a - \frac{1}{a})^2\), we will use the identity for the square of a binomial, which states that: \[ (a - b)^2 = a^2 - 2ab + b^2 \] ### Step-by-Step Solution: 1. **Identify \(a\) and \(b\)**: In our case, let \(a = 3a\) and \(b = \frac{1}{a}\). 2. **Apply the formula**: Using the formula, we can expand the expression: \[ (3a - \frac{1}{a})^2 = (3a)^2 - 2(3a)(\frac{1}{a}) + \left(\frac{1}{a}\right)^2 \] 3. **Calculate each term**: - Calculate \((3a)^2\): \[ (3a)^2 = 9a^2 \] - Calculate \(-2(3a)(\frac{1}{a})\): \[ -2(3a)(\frac{1}{a}) = -6 \] - Calculate \(\left(\frac{1}{a}\right)^2\): \[ \left(\frac{1}{a}\right)^2 = \frac{1}{a^2} \] 4. **Combine all the terms**: Now, we combine all the calculated terms: \[ 9a^2 - 6 + \frac{1}{a^2} \] 5. **Final expression**: The expanded form of \((3a - \frac{1}{a})^2\) is: \[ 9a^2 - 6 + \frac{1}{a^2} \] ### Final Answer: \[ (3a - \frac{1}{a})^2 = 9a^2 - 6 + \frac{1}{a^2} \]
Promotional Banner

Topper's Solved these Questions

  • IDENTITIES

    ICSE|Exercise EXERCISE 12(A)|40 Videos
  • IDENTITIES

    ICSE|Exercise EXERCISE 12(B)|36 Videos
  • FACTORISATION

    ICSE|Exercise EXERCISE 13(F)|49 Videos
  • INTEREST (SIMPLE AND COMPOUND)

    ICSE|Exercise EXERCISE 9(C)|39 Videos

Similar Questions

Explore conceptually related problems

Expand : (vi) (2a - (1)/(a) )^2

Expand : (vii) (3x + (1)/( 3x) )^2

Expand : (viii) (2x - (1)/( 2x ) )^2

Expand : (ii) (a- 2b)^2

Expand : (i) (2x + (1)/( 2x))^2

Expand : (ii) (5y - 3x)^3

Expand : (2a - (1)/( 2a) )^3

Expand : (i) (2a + b)^3

Expand : (i) (3x + 2)^3

Expand : (a + (1)/( 2a ) )^2