Home
Class 8
MATHS
Expand : (iii) (a+ 2b- 5c )^2...

Expand : (iii) `(a+ 2b- 5c )^2`

Text Solution

AI Generated Solution

The correct Answer is:
To expand the expression \((a + 2b - 5c)^2\), we will use the formula for the square of a trinomial, which is given by: \[ (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca \] In our case, we have \(a\), \(b = 2b\), and \(c = -5c\). Let's expand step by step. ### Step 1: Identify the terms We can identify our terms as: - \(x = a\) - \(y = 2b\) - \(z = -5c\) ### Step 2: Apply the formula Using the formula, we will expand \((x + y + z)^2\): \[ (x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx \] ### Step 3: Calculate each term 1. **Calculate \(x^2\)**: \[ x^2 = a^2 \] 2. **Calculate \(y^2\)**: \[ y^2 = (2b)^2 = 4b^2 \] 3. **Calculate \(z^2\)**: \[ z^2 = (-5c)^2 = 25c^2 \] 4. **Calculate \(2xy\)**: \[ 2xy = 2 \cdot a \cdot (2b) = 4ab \] 5. **Calculate \(2yz\)**: \[ 2yz = 2 \cdot (2b) \cdot (-5c) = -20bc \] 6. **Calculate \(2zx\)**: \[ 2zx = 2 \cdot (-5c) \cdot a = -10ac \] ### Step 4: Combine all terms Now, we combine all the calculated terms: \[ (a + 2b - 5c)^2 = a^2 + 4b^2 + 25c^2 + 4ab - 20bc - 10ac \] ### Final Answer Thus, the expanded form of \((a + 2b - 5c)^2\) is: \[ a^2 + 4b^2 + 25c^2 + 4ab - 20bc - 10ac \] ---
Promotional Banner

Topper's Solved these Questions

  • IDENTITIES

    ICSE|Exercise EXERCISE 12(A)|40 Videos
  • IDENTITIES

    ICSE|Exercise EXERCISE 12(B)|36 Videos
  • FACTORISATION

    ICSE|Exercise EXERCISE 13(F)|49 Videos
  • INTEREST (SIMPLE AND COMPOUND)

    ICSE|Exercise EXERCISE 9(C)|39 Videos

Similar Questions

Explore conceptually related problems

Expand : (iv) (a - 2 b - 5c )^2

Expand : (ii) (2a - 5b - 4c)^2

Expand : (ii) (a- 2b)^2

Expand : (i) (2a + b)^2

Expand : (i) (2a + b)^3

Expand : (vi) (a-b + c)^2

Expand : (v) (a+ b - c)^2

Expand : (i) (a+b-c)^(2) " " (ii) (a-2b-5c)^(2) " " (iii) (3a-2b-5c)^(2) " " (iv) (2x+(1)/(x)+1)^(2) .

Expand : (i) (3a-5b)^(2) " " (ii) (a+(1)/(a))^(2) " " (iii) (2x-(1)/(2x))^(2) .

Write the following in the expanded form: (i) (a+2b+c)^2 (ii) (2a-3b-c)^2