Home
Class 8
MATHS
Expand : (iv) (a - 2 b - 5c )^2...

Expand : (iv) `(a - 2 b - 5c )^2`

Text Solution

AI Generated Solution

The correct Answer is:
To expand the expression \((a - 2b - 5c)^2\), we will use the formula for the square of a trinomial. The formula states that: \[ (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc) \] In our case, we can rewrite \(a - 2b - 5c\) as \(a + (-2b) + (-5c)\). Now, we can identify \(b = -2b\) and \(c = -5c\). ### Step 1: Identify the components Let: - \(x = a\) - \(y = -2b\) - \(z = -5c\) ### Step 2: Apply the formula Using the formula, we have: \[ (x + y + z)^2 = x^2 + y^2 + z^2 + 2(xy + xz + yz) \] ### Step 3: Calculate each term 1. **Calculate \(x^2\)**: \[ x^2 = a^2 \] 2. **Calculate \(y^2\)**: \[ y^2 = (-2b)^2 = 4b^2 \] 3. **Calculate \(z^2\)**: \[ z^2 = (-5c)^2 = 25c^2 \] 4. **Calculate \(2(xy + xz + yz)\)**: - \(xy = a \cdot (-2b) = -2ab\) - \(xz = a \cdot (-5c) = -5ac\) - \(yz = (-2b) \cdot (-5c) = 10bc\) Therefore, \[ xy + xz + yz = -2ab - 5ac + 10bc \] and \[ 2(xy + xz + yz) = 2(-2ab - 5ac + 10bc) = -4ab - 10ac + 20bc \] ### Step 4: Combine all parts Putting it all together, we have: \[ (a - 2b - 5c)^2 = a^2 + 4b^2 + 25c^2 - 4ab + 20bc - 10ac \] ### Final Answer: \[ (a - 2b - 5c)^2 = a^2 + 4b^2 + 25c^2 - 4ab + 20bc - 10ac \] ---
Promotional Banner

Topper's Solved these Questions

  • IDENTITIES

    ICSE|Exercise EXERCISE 12(A)|40 Videos
  • IDENTITIES

    ICSE|Exercise EXERCISE 12(B)|36 Videos
  • FACTORISATION

    ICSE|Exercise EXERCISE 13(F)|49 Videos
  • INTEREST (SIMPLE AND COMPOUND)

    ICSE|Exercise EXERCISE 9(C)|39 Videos

Similar Questions

Explore conceptually related problems

Expand : (ii) (a- 2b)^2

Expand : (ii) (2a - 5b - 4c)^2

Expand : (iv) (6a - 7b)^3

Expand : (iii) (a+ 2b- 5c )^2

Expand : (i) (2a + b)^2

Expand : (i) (2a + b)^3

Expand : (v) (a+ b - c)^2

Expand : (vi) (a-b + c)^2

Expand : (iv) (x + 5y)^3

Expand : (a-2b)^3