Home
Class 8
MATHS
Expand : (i) (3x + 2)^3...

Expand : (i) `(3x + 2)^3`

Text Solution

AI Generated Solution

The correct Answer is:
To expand the expression \((3x + 2)^3\), we can use the formula for the cube of a binomial, which is given by: \[ (a + b)^3 = a^3 + b^3 + 3ab(a + b) \] Here, we can identify \(a = 3x\) and \(b = 2\). ### Step 1: Identify \(a\) and \(b\) - Let \(a = 3x\) and \(b = 2\). ### Step 2: Calculate \(a^3\) and \(b^3\) - Calculate \(a^3 = (3x)^3 = 27x^3\). - Calculate \(b^3 = 2^3 = 8\). ### Step 3: Calculate \(3ab\) - Calculate \(3ab = 3 \cdot (3x) \cdot 2 = 18x\). ### Step 4: Substitute into the formula Now substitute \(a^3\), \(b^3\), and \(3ab\) into the formula: \[ (3x + 2)^3 = a^3 + b^3 + 3ab(a + b) \] This becomes: \[ (3x + 2)^3 = 27x^3 + 8 + 18x(3x + 2) \] ### Step 5: Expand \(18x(3x + 2)\) Now, we need to expand \(18x(3x + 2)\): \[ 18x(3x + 2) = 54x^2 + 36x \] ### Step 6: Combine all parts Now, combine all the parts together: \[ (3x + 2)^3 = 27x^3 + 8 + 54x^2 + 36x \] ### Final Answer Thus, the expanded form of \((3x + 2)^3\) is: \[ 27x^3 + 54x^2 + 36x + 8 \] ---
Promotional Banner

Topper's Solved these Questions

  • IDENTITIES

    ICSE|Exercise EXERCISE 12(A)|40 Videos
  • IDENTITIES

    ICSE|Exercise EXERCISE 12(B)|36 Videos
  • FACTORISATION

    ICSE|Exercise EXERCISE 13(F)|49 Videos
  • INTEREST (SIMPLE AND COMPOUND)

    ICSE|Exercise EXERCISE 9(C)|39 Videos

Similar Questions

Explore conceptually related problems

Expand : (iv) (x + 5y)^3

Expand : (i) (2a + b)^3

Expand : (i) (2a + b)^2

Expand : (i) (3x - 4y +5z)^2

Expand : (vii) (3x + (1)/( 3x) )^2

Expand : (ii) (5y - 3x)^3

Expand : (2x- y + 2)^(3)

Expand : (i) (2x+3y)^(3) " " (ii) (5y-3x)^(3) " " (iii) (2a+3b)^(3) .

Expand : (i) (5-3y-2)^(2) (ii) (x-(1)/(x)+5)^(2)

Expand : (i) (2x + (1)/( 2x))^2