Home
Class 8
MATHS
Expand : (ii) (5y - 3x)^3...

Expand : (ii) `(5y - 3x)^3`

Text Solution

AI Generated Solution

The correct Answer is:
To expand the expression \((5y - 3x)^3\), we can use the identity for the cube of a binomial, which is given by: \[ (a - b)^3 = a^3 - b^3 - 3ab(a - b) \] In our case, we can identify: - \(a = 5y\) - \(b = 3x\) Now, we will substitute these values into the identity. ### Step 1: Substitute \(a\) and \(b\) into the identity Using the identity, we have: \[ (5y - 3x)^3 = (5y)^3 - (3x)^3 - 3(5y)(3x)(5y - 3x) \] ### Step 2: Calculate \(a^3\) and \(b^3\) Now, we calculate \(a^3\) and \(b^3\): \[ (5y)^3 = 125y^3 \] \[ (3x)^3 = 27x^3 \] ### Step 3: Calculate \(3ab\) Next, we calculate \(3ab\): \[ 3(5y)(3x) = 45xy \] ### Step 4: Substitute back into the expression Now, we substitute these values back into the expression: \[ (5y - 3x)^3 = 125y^3 - 27x^3 - 45xy(5y - 3x) \] ### Step 5: Expand the last term Now we need to expand the last term \( - 45xy(5y - 3x) \): \[ - 45xy(5y) + 45xy(3x) = -225xy^2 + 135x^2y \] ### Step 6: Combine all the terms Putting everything together, we have: \[ (5y - 3x)^3 = 125y^3 - 27x^3 - 225xy^2 + 135x^2y \] ### Final Answer Thus, the final expanded form of \((5y - 3x)^3\) is: \[ 125y^3 - 27x^3 - 225xy^2 + 135x^2y \] ---
Promotional Banner

Topper's Solved these Questions

  • IDENTITIES

    ICSE|Exercise EXERCISE 12(A)|40 Videos
  • IDENTITIES

    ICSE|Exercise EXERCISE 12(B)|36 Videos
  • FACTORISATION

    ICSE|Exercise EXERCISE 13(F)|49 Videos
  • INTEREST (SIMPLE AND COMPOUND)

    ICSE|Exercise EXERCISE 9(C)|39 Videos

Similar Questions

Explore conceptually related problems

Expand : (i) (3x + 2)^3

Expand : (iv) (x + 5y)^3

Expand : (i) (5-3y-2)^(2) (ii) (x-(1)/(x)+5)^(2)

Expand : (i) (3x - 4y +5z)^2

Expand : (ii) (3a - (1)/( a) )^2

Expand : (i) (2x+3y)^(3) " " (ii) (5y-3x)^(3) " " (iii) (2a+3b)^(3) .

Expand : (i) (4a-5b)^(3) " " (ii) (a+2b)^(3)

Expand : (2x- y + 2)^(3)

Expand: (3x- 5y - 2z) (3x- 5y + 2z)

Expand : (5x +3y)^3