Home
Class 8
MATHS
(i) If a+b = 8 and ab = 15, find a^2 + b...

(i) If `a+b = 8 and ab = 15`, find `a^2 + b^2`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a^2 + b^2 \) given that \( a + b = 8 \) and \( ab = 15 \). ### Step-by-step Solution: 1. **Use the identity for \( a^2 + b^2 \)**: We know the identity: \[ a^2 + b^2 = (a + b)^2 - 2ab \] This means we can express \( a^2 + b^2 \) in terms of \( a + b \) and \( ab \). 2. **Substitute the known values**: From the problem, we have: - \( a + b = 8 \) - \( ab = 15 \) Now, we can substitute these values into the identity: \[ a^2 + b^2 = (8)^2 - 2(15) \] 3. **Calculate \( (a + b)^2 \)**: \[ (8)^2 = 64 \] 4. **Calculate \( 2ab \)**: \[ 2(15) = 30 \] 5. **Substitute back into the equation**: Now we substitute these results back into the equation: \[ a^2 + b^2 = 64 - 30 \] 6. **Perform the subtraction**: \[ a^2 + b^2 = 34 \] ### Final Answer: Thus, the value of \( a^2 + b^2 \) is \( 34 \). ---
Promotional Banner

Topper's Solved these Questions

  • IDENTITIES

    ICSE|Exercise EXERCISE 12(A)|40 Videos
  • IDENTITIES

    ICSE|Exercise EXERCISE 12(B)|36 Videos
  • FACTORISATION

    ICSE|Exercise EXERCISE 13(F)|49 Videos
  • INTEREST (SIMPLE AND COMPOUND)

    ICSE|Exercise EXERCISE 9(C)|39 Videos

Similar Questions

Explore conceptually related problems

If a+ b = 7 and ab= 6, find a^(2) - b^(2)

If a+b = 5 and ab = 6 , find a^2 + b^2

If a+b=8 and ab=15 , find : a^3 + b^3 .

If a-b=6 and ab=16 , find a^2 +b^2

If a + b= 9 and ab = -22 , find : a^(2)- b^(2)

If a+ b = 6 and ab = 8 , find : a^(3) + b^(3) .

If a-b= 0.9 and ab= 0.36 find: a^(2) -b^(2)

(ii) If a-b=3 and a^2 + b^2 = 29 , find ab .

If a^(2) +b^(2) = 13 and ab= 6 find: a^(2) - b^(2)

If a^2 + b^2 = 29 and ab = 10 , find : (i) a+b