Home
Class 8
MATHS
(ii) If a-b=3 and a^2 + b^2 = 29, find ...

(ii) If `a-b=3 and a^2 + b^2 = 29`, find `ab`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we are given two equations: 1. \( a - b = 3 \) 2. \( a^2 + b^2 = 29 \) We need to find the value of \( ab \). ### Step-by-Step Solution: **Step 1: Use the identity for \( (a - b)^2 \)** We know the identity: \[ (a - b)^2 = a^2 + b^2 - 2ab \] **Step 2: Substitute the known values into the identity** From the problem, we have: - \( a - b = 3 \) - \( a^2 + b^2 = 29 \) Substituting these values into the identity: \[ (3)^2 = 29 - 2ab \] **Step 3: Calculate \( (3)^2 \)** Calculating the left side: \[ 9 = 29 - 2ab \] **Step 4: Rearrange the equation to isolate \( ab \)** Now, we will rearrange the equation: \[ 9 - 29 = -2ab \] \[ -20 = -2ab \] **Step 5: Divide both sides by -2** To find \( ab \), divide both sides by -2: \[ ab = \frac{-20}{-2} = 10 \] ### Final Answer: Thus, the value of \( ab \) is \( 10 \). ---
Promotional Banner

Topper's Solved these Questions

  • IDENTITIES

    ICSE|Exercise EXERCISE 12(A)|40 Videos
  • IDENTITIES

    ICSE|Exercise EXERCISE 12(B)|36 Videos
  • FACTORISATION

    ICSE|Exercise EXERCISE 13(F)|49 Videos
  • INTEREST (SIMPLE AND COMPOUND)

    ICSE|Exercise EXERCISE 9(C)|39 Videos

Similar Questions

Explore conceptually related problems

(i) If a+b = 8 and ab = 15 , find a^2 + b^2 .

If a - b = 3 and ab = 10 , find : a^3 - b^3 .

If a+b+ c =9 and a^(2) + b^(2) + c^(2) = 29 , find ab + bc + ca .

If a+b = 5 and ab = 6 , find a^2 + b^2

If a^2 + b^2 = 73 and ab = 24 , find : (i) a+b

If a-b-c= 3 and a^(2) + b^(2) + c^(2) = 77 , find: ab- bc+ ca

If a^(2) +b^(2) = 13 and ab= 6 find: a+b

If a^(2) +b^(2) = 13 and ab= 6 find: a-b

(i) If a^(2)+b^(2)+c^(2)=20 " and" a+b+c=0, " find " ab+bc+ac . (ii) If a^(2)+b^(2)+c^(2)=250 " and" ab+bc+ca=3, " find" a+b+c . (iii) If a+b+c=11 and ab+bc+ca=25, then find the value of a^(3)+b^(3)+c^(3)-3 abc.

If a-b=6 and ab=16 , find a^2 +b^2