Home
Class 8
MATHS
If a^2 + b^2 = 73 and ab = 24, find : (i...

If `a^2 + b^2 = 73 and ab = 24`, find : (i) `a+b`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will use the identity \( (a + b)^2 = a^2 + b^2 + 2ab \). ### Step-by-Step Solution: 1. **Write down the given equations:** \[ a^2 + b^2 = 73 \] \[ ab = 24 \] 2. **Use the identity for \( (a + b)^2 \):** \[ (a + b)^2 = a^2 + b^2 + 2ab \] 3. **Substitute the known values into the identity:** \[ (a + b)^2 = 73 + 2 \times 24 \] 4. **Calculate \( 2 \times 24 \):** \[ 2 \times 24 = 48 \] 5. **Add the values:** \[ (a + b)^2 = 73 + 48 = 121 \] 6. **Take the square root to find \( a + b \):** \[ a + b = \sqrt{121} \] 7. **Calculate the square root:** \[ a + b = 11 \] ### Final Answer: \[ a + b = 11 \]
Promotional Banner

Topper's Solved these Questions

  • IDENTITIES

    ICSE|Exercise EXERCISE 12(A)|40 Videos
  • IDENTITIES

    ICSE|Exercise EXERCISE 12(B)|36 Videos
  • FACTORISATION

    ICSE|Exercise EXERCISE 13(F)|49 Videos
  • INTEREST (SIMPLE AND COMPOUND)

    ICSE|Exercise EXERCISE 9(C)|39 Videos

Similar Questions

Explore conceptually related problems

If a^2 + b^2 = 73 and ab = 24 , find : (ii) a-b

If a^2 + b^2 = 29 and ab = 10 , find : (i) a+b

If a^(2) + b^(2) = 41 and ab = 4 , find : (i) a-b

If a^2 + b^2 = 29 and ab = 10 , find : (ii) a-b

If a^(2) + b^(2) = 10 and ab = 3 , find : (i) a-b

If a^(2) + b^(2) = 41 and ab = 4 , find : (ii) a+b

If a^(2) + b^(2) = 10 and ab = 3 , find : (ii) a+b

If a^(2) +b^(2) = 13 and ab= 6 find: a+b

If a^(2) +b^(2) = 13 and ab= 6 find: a-b

If a^(2) + b^(2)= 34 and ab= 12 , find: 3(a +b)^(2) + 5(a-b)^(2)