Home
Class 8
MATHS
If a^2 + b^2 = 73 and ab = 24, find : (i...

If `a^2 + b^2 = 73 and ab = 24`, find : (ii) `a-b`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a - b \) given the equations \( a^2 + b^2 = 73 \) and \( ab = 24 \). We can use the identity: \[ (a - b)^2 = a^2 + b^2 - 2ab \] ### Step-by-step Solution: 1. **Write down the identity**: \[ (a - b)^2 = a^2 + b^2 - 2ab \] 2. **Substitute the known values**: We know \( a^2 + b^2 = 73 \) and \( ab = 24 \). Substitute these values into the identity: \[ (a - b)^2 = 73 - 2 \cdot 24 \] 3. **Calculate \( 2ab \)**: Calculate \( 2ab \): \[ 2 \cdot 24 = 48 \] 4. **Substitute back into the equation**: Now substitute \( 48 \) back into the equation: \[ (a - b)^2 = 73 - 48 \] 5. **Perform the subtraction**: Calculate \( 73 - 48 \): \[ (a - b)^2 = 25 \] 6. **Take the square root**: To find \( a - b \), take the square root of both sides: \[ a - b = \sqrt{25} \] 7. **Calculate the final result**: Since \( \sqrt{25} = 5 \): \[ a - b = 5 \] ### Final Answer: Thus, the value of \( a - b \) is \( 5 \). ---
Promotional Banner

Topper's Solved these Questions

  • IDENTITIES

    ICSE|Exercise EXERCISE 12(A)|40 Videos
  • IDENTITIES

    ICSE|Exercise EXERCISE 12(B)|36 Videos
  • FACTORISATION

    ICSE|Exercise EXERCISE 13(F)|49 Videos
  • INTEREST (SIMPLE AND COMPOUND)

    ICSE|Exercise EXERCISE 9(C)|39 Videos

Similar Questions

Explore conceptually related problems

If a^2 + b^2 = 73 and ab = 24 , find : (i) a+b

If a^(2) + b^(2) = 41 and ab = 4 , find : (i) a-b

If a^2 + b^2 = 29 and ab = 10 , find : (ii) a-b

If a^(2) + b^(2) = 41 and ab = 4 , find : (ii) a+b

If a^(2) + b^(2) = 10 and ab = 3 , find : (i) a-b

If a^(2) + b^(2) = 10 and ab = 3 , find : (ii) a+b

If a^2 + b^2 = 29 and ab = 10 , find : (i) a+b

If a^(2) +b^(2) = 13 and ab= 6 find: a-b

If a^(2) +b^(2) = 13 and ab= 6 find: a+b

If a^(2) + b^(2)= 34 and ab= 12 , find: 7(a-b)^(2) - 2(a +b)^(2)