Home
Class 8
MATHS
If a- (1)/( a) = 3, find a^(3) - (1)/(a^...

If `a- (1)/( a) = 3`, find `a^(3) - (1)/(a^3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( a - \frac{1}{a} = 3 \) and find \( a^3 - \frac{1}{a^3} \), we can use the identity related to cubes. ### Step-by-step Solution: 1. **Start with the given equation**: \[ a - \frac{1}{a} = 3 \] 2. **Cube both sides of the equation**: Using the identity \( (x - y)^3 = x^3 - y^3 - 3xy(x - y) \), we can let \( x = a \) and \( y = \frac{1}{a} \). Therefore: \[ (a - \frac{1}{a})^3 = a^3 - \left(\frac{1}{a}\right)^3 - 3 \cdot a \cdot \frac{1}{a} \cdot (a - \frac{1}{a}) \] 3. **Substituting the values**: We know \( a - \frac{1}{a} = 3 \). Thus: \[ (3)^3 = a^3 - \frac{1}{a^3} - 3 \cdot 1 \cdot 3 \] 4. **Calculate \( 3^3 \)**: \[ 27 = a^3 - \frac{1}{a^3} - 9 \] 5. **Rearranging the equation**: \[ a^3 - \frac{1}{a^3} = 27 + 9 \] 6. **Final calculation**: \[ a^3 - \frac{1}{a^3} = 36 \] ### Final Answer: \[ a^3 - \frac{1}{a^3} = 36 \]
Promotional Banner

Topper's Solved these Questions

  • IDENTITIES

    ICSE|Exercise EXERCISE 12(A)|40 Videos
  • IDENTITIES

    ICSE|Exercise EXERCISE 12(B)|36 Videos
  • FACTORISATION

    ICSE|Exercise EXERCISE 13(F)|49 Videos
  • INTEREST (SIMPLE AND COMPOUND)

    ICSE|Exercise EXERCISE 9(C)|39 Videos

Similar Questions

Explore conceptually related problems

If a ne 0 and a - (1)/(a)= 3 , find : a^(3)- (1)/(a^(3))

If a ne 0 and a - (1)/(a)= 4 , find a^(3)- (1)/(a^(3))

If a - (1)/(a) = 3 , find a^(2) + 3a +(1)/(a^(2)) - (3)/(a)

If a- (1)/(a) = 5 , find a^(2) +(1)/(a^(2)) - 3a + (3)/(a).

If x+(1)/(x)=7 ,then find x^(3)-(1)/(x^(3))

If (x^(2) + 1)/(x)= 3(1)/(3) and x gt 1 , find x^(3)- (1)/(x^(3))

Find : a^3 - (1)/( a^3) , if a - (1)/( a) =4 .

If a^(2) + (1)/(a^(2)) = 18 and a ne 0 , find: a^(3)- (1)/(a^(3))

If a^(2) + (1)/(a^(2))= 47 and a ne 0 , find: a^(3) + (1)/(a^(3))

If x - (1)/(x) = (1)/(3) evaluate x^(3) - (1)/(x^(3))