Home
Class 8
MATHS
Find : a^3 + (1)/( a^3), if a + (1)/( a)...

Find : `a^3 + (1)/( a^3)`, if `a + (1)/( a) =5`.

Text Solution

AI Generated Solution

The correct Answer is:
To find \( a^3 + \frac{1}{a^3} \) given that \( a + \frac{1}{a} = 5 \), we can use the identity for the cube of a sum. Here are the steps: ### Step 1: Use the identity for cubes We know that: \[ \left( a + \frac{1}{a} \right)^3 = a^3 + \frac{1}{a^3} + 3 \left( a \cdot \frac{1}{a} \right) \left( a + \frac{1}{a} \right) \] This simplifies to: \[ \left( a + \frac{1}{a} \right)^3 = a^3 + \frac{1}{a^3} + 3 \left( 1 \right) \left( a + \frac{1}{a} \right) \] Thus: \[ \left( a + \frac{1}{a} \right)^3 = a^3 + \frac{1}{a^3} + 3 \left( a + \frac{1}{a} \right) \] ### Step 2: Substitute the known value From the problem, we know that: \[ a + \frac{1}{a} = 5 \] Now, substituting this value into the equation: \[ 5^3 = a^3 + \frac{1}{a^3} + 3 \cdot 5 \] ### Step 3: Calculate \( 5^3 \) Calculating \( 5^3 \): \[ 5^3 = 125 \] So we have: \[ 125 = a^3 + \frac{1}{a^3} + 15 \] ### Step 4: Solve for \( a^3 + \frac{1}{a^3} \) Now, we can isolate \( a^3 + \frac{1}{a^3} \): \[ a^3 + \frac{1}{a^3} = 125 - 15 \] \[ a^3 + \frac{1}{a^3} = 110 \] ### Final Answer Thus, the value of \( a^3 + \frac{1}{a^3} \) is: \[ \boxed{110} \]
Promotional Banner

Topper's Solved these Questions

  • IDENTITIES

    ICSE|Exercise EXERCISE 12(D)|49 Videos
  • IDENTITIES

    ICSE|Exercise EXERCISE 12(B)|36 Videos
  • FACTORISATION

    ICSE|Exercise EXERCISE 13(F)|49 Videos
  • INTEREST (SIMPLE AND COMPOUND)

    ICSE|Exercise EXERCISE 9(C)|39 Videos

Similar Questions

Explore conceptually related problems

If a- (1)/(a) = 5 , find a^(2) +(1)/(a^(2)) - 3a + (3)/(a).

Find: -3(3)/(4)xx5(1)/(3)

Find: 3(1)/(8)+1(5)/(12)

Find: 1(2)/(5)+2(1)/(3)

Find the sum of: 24 terms and n terms of 2 (1)/(2) , 3 (1)/(3) , 4 (1)/(6) ,5 ,......,

Use direct method to evaluate : (x) ((3)/(5) a + (1)/(2) ) ((3)/(5) a - (1)/(2) )

Find : (-7)/4 + 5/3 + (-5)/6 + 1/3 + (-1)/2

Evaluate: c. 5 (1)/(4) xx 3 (5)/(6) + 1 (3)/(5) div 5 (1)/(3)

Evaluate : [5(8^((1)/(3))+ 27 ^((1)/(3))) ^(3) ]^((1)/(4))

Find the sum of the series to n terms and to infinity : (1)/(1.3)+ (1)/(3.5) +(1)/(5.7) +(1)/(7.9)+...