Home
Class 8
MATHS
If m - (1)/(m ) = 5, find : (i) m^(2) + ...

If `m - (1)/(m ) = 5`, find : (i) `m^(2) + (1)/( m^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( m - \frac{1}{m} = 5 \) and find \( m^2 + \frac{1}{m^2} \), we can follow these steps: ### Step 1: Square both sides of the equation Start with the equation: \[ m - \frac{1}{m} = 5 \] Square both sides: \[ \left(m - \frac{1}{m}\right)^2 = 5^2 \] This gives: \[ m^2 - 2 \cdot m \cdot \frac{1}{m} + \frac{1}{m^2} = 25 \] ### Step 2: Simplify the equation The middle term simplifies: \[ m^2 - 2 + \frac{1}{m^2} = 25 \] Now, we can rearrange this to isolate \( m^2 + \frac{1}{m^2} \): \[ m^2 + \frac{1}{m^2} = 25 + 2 \] ### Step 3: Calculate the final result Now, add the numbers: \[ m^2 + \frac{1}{m^2} = 27 \] ### Final Answer Thus, the value of \( m^2 + \frac{1}{m^2} \) is: \[ \boxed{27} \]
Promotional Banner

Topper's Solved these Questions

  • IDENTITIES

    ICSE|Exercise EXERCISE 12(C) |23 Videos
  • FACTORISATION

    ICSE|Exercise EXERCISE 13(F)|49 Videos
  • INTEREST (SIMPLE AND COMPOUND)

    ICSE|Exercise EXERCISE 9(C)|39 Videos

Similar Questions

Explore conceptually related problems

If m - (1)/(m ) = 5 , find : (iii) m^(2) - (1)/( m^2)

If m - (1)/(m ) = 5 , find : (ii) m^4 + (1)/( m^4)

If l : m = 2 (1)/(2) : 1(2)/(3) and m : n = 1 (1)/(4) : 3 (1)/(2) , find l : m : n

Find (m+n)-:(m-n) , if : (i) m=(2)/(3) "and" n=(3)/(2) (ii) m=(3)/(4) "and" n=(4)/(3) (iii) m=(4)/(5) "and" n=-(3)/(10)

If (7m+2n)/(7m-2n)=5/(3) use properties of proportion to find (i) m:n (ii) (m^(2)+n^(2))/(m^(2)-n^(2))

If m+1=(5(m-1))/(3) , then (1)/(m)=

In the figure, if m_(1) is at rest, find the relation among m_(1), m_(2) and m_(3) ?

If 2^(-m)\ xx1/(2^m)=1/4, then 1/(14)\ {(4^m)^(1//2)+\ (1/(5^m))^(-1)} is equal to (a) 1/2 (b) 2 (c) 4 (d) -1/4

Given : M =[(5,-3),(-2, 4)] find its transpose matrix M'. If possible, find : (i) M+M ""^(t) (ii) M^(t)-M