Home
Class 8
MATHS
Factorise : (i) 10a^(4) x^(2) - 15a^(6) ...

Factorise : (i) `10a^(4) x^(2) - 15a^(6) x^(4) + 20 a^(7) x^(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \(10a^{4}x^{2} - 15a^{6}x^{4} + 20a^{7}x^{5}\), we will follow these steps: ### Step 1: Identify the common factors First, we need to identify the common factors in all the terms of the expression. The coefficients are 10, -15, and 20. The greatest common divisor (GCD) of these numbers is 5. Next, we look at the variable parts: - For \(a\): The lowest power is \(a^{4}\). - For \(x\): The lowest power is \(x^{2}\). Thus, the common factor for the entire expression is \(5a^{4}x^{2}\). ### Step 2: Factor out the common factor Now, we will factor out \(5a^{4}x^{2}\) from each term in the expression: \[ 10a^{4}x^{2} - 15a^{6}x^{4} + 20a^{7}x^{5} = 5a^{4}x^{2} \left( \frac{10a^{4}x^{2}}{5a^{4}x^{2}} - \frac{15a^{6}x^{4}}{5a^{4}x^{2}} + \frac{20a^{7}x^{5}}{5a^{4}x^{2}} \right) \] Calculating each term inside the parentheses: - The first term: \(\frac{10a^{4}x^{2}}{5a^{4}x^{2}} = 2\) - The second term: \(\frac{-15a^{6}x^{4}}{5a^{4}x^{2}} = -3a^{2}x^{2}\) - The third term: \(\frac{20a^{7}x^{5}}{5a^{4}x^{2}} = 4a^{3}x^{3}\) Putting it all together, we have: \[ 10a^{4}x^{2} - 15a^{6}x^{4} + 20a^{7}x^{5} = 5a^{4}x^{2} (2 - 3a^{2}x^{2} + 4a^{3}x^{3}) \] ### Step 3: Write the final factorised form Thus, the final factorised form of the expression is: \[ 5a^{4}x^{2} (2 - 3a^{2}x^{2} + 4a^{3}x^{3}) \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Factorise : (i) 6x^(3) - 8x^(2)

Factorise : (v) x^4 - 5x^(2) - 36

Factorise : (i) 5x^2 - 10x

Factorise : 15x+5

Factorise : x^(4) + x^(2) +1

Factorise : 4x^(4) - x^(2) - 12x - 36

Factorise : x^(4) + y^(4) - 23x^(2)y^(2)

Factorise : 4x^(2) + (1)/(4x^(2)) + 1

Factorise : (i) x^2 - 9x + 20

Factorise : x^(4) + y^(4) - 3x^(2)y^(2)