Home
Class 8
MATHS
Factorise : (i) y^3 - 3y^2 + 2y - 6 - xy...

Factorise : (i) `y^3 - 3y^2 + 2y - 6 - xy + 3x`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( y^3 - 3y^2 + 2y - 6 - xy + 3x \), we can follow these steps: ### Step 1: Rearrange the expression First, we can rearrange the terms in the expression for better visibility: \[ y^3 - 3y^2 + 2y - xy + 3x - 6 \] ### Step 2: Group the terms Next, we can group the terms in a way that allows us to factor them: \[ (y^3 - 3y^2) + (2y - 6) + (-xy + 3x) \] ### Step 3: Factor out common terms from each group Now, we will factor out the common terms from each group: 1. From \( y^3 - 3y^2 \), we can factor out \( y^2 \): \[ y^2(y - 3) \] 2. From \( 2y - 6 \), we can factor out \( 2 \): \[ 2(y - 3) \] 3. From \( -xy + 3x \), we can factor out \( -x \): \[ -x(y - 3) \] Putting it all together, we have: \[ y^2(y - 3) + 2(y - 3) - x(y - 3) \] ### Step 4: Factor out the common binomial factor Now we can see that \( (y - 3) \) is a common factor: \[ (y - 3)(y^2 + 2 - x) \] ### Final Result Thus, the factorised form of the expression \( y^3 - 3y^2 + 2y - 6 - xy + 3x \) is: \[ (y - 3)(y^2 + 2 - x) \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Factorise : (ii) 3x^2 y - 6xy^2 + 9xy

Factorise : 2x^(2) + xy - 6y^(2)

Factorise : -x^(2) y - x + 3xy + 3

Factorise : (vii) x^(2) y^(2) - 3xy - 40

Factorise 1- ( 2x- 3y ) ^(2)

Factorise : (iv) (2x - y)^(3) - (2x - y)

Factorise : 4x(3x - 2y) - 2y (3x-2y)

Factorise 27 -x^(3) y^(3) +6-2xy

Factorise : 12(3x - 2y)^(2) - (3x - 2y)-1

Factorise 8( 3x - 2y ) ^(2) - 6x + 4y -1