Home
Class 8
MATHS
Factorise : (ii) a^2 - (b+5) a + 5b...

Factorise : (ii) `a^2 - (b+5) a + 5b`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( a^2 - (b + 5)a + 5b \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ a^2 - (b + 5)a + 5b \] This can be rewritten as: \[ a^2 - (b + 5)a + 5b = a^2 - ba - 5a + 5b \] ### Step 2: Rearrange the terms Now, we can rearrange the terms: \[ a^2 - ba - 5a + 5b \] ### Step 3: Group the terms Next, we group the terms in pairs: \[ (a^2 - ba) + (-5a + 5b) \] ### Step 4: Factor out the common terms Now, we can factor out the common terms from each group: - From the first group \( a^2 - ba \), we can factor out \( a \): \[ a(a - b) \] - From the second group \( -5a + 5b \), we can factor out \( -5 \): \[ -5(a - b) \] ### Step 5: Combine the factors Now we can combine the factored terms: \[ a(a - b) - 5(a - b) \] Notice that \( (a - b) \) is a common factor: \[ (a - b)(a - 5) \] ### Final Answer Thus, the factorised form of the expression \( a^2 - (b + 5)a + 5b \) is: \[ (a - b)(a - 5) \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Factorise : (ii) y^2 + 5y - 24

Factorise : (4.5)^2 - (1.5)^2

Factorise : a^2 - 5a + 6

Factorise : a^2 + 5a - 6

Factorise : (ii) 3a^(2) x - bx + 3a^(2) - b

Factorise : (ii) x^(2) y - xy^(2) + 5x - 5y

Factorise : (i) (a+b)^2 -11 (a+b) - 42

Factorise : (ii) 2x (a+b) - 3y (a+b)

Factorise : (ii) 54 a^(2) b^(2) - 6

Factorise : a^2 + 5a + 6