Home
Class 8
MATHS
Factorise : (i) 1-4 (a-2b)^2...

Factorise : (i) `1-4 (a-2b)^2`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \(1 - 4(a - 2b)^2\), we will follow these steps: ### Step 1: Rewrite the Expression Start with the given expression: \[ 1 - 4(a - 2b)^2 \] ### Step 2: Recognize the Structure Notice that \(4(a - 2b)^2\) can be rewritten as \((2(a - 2b))^2\). Thus, we can express the equation as: \[ 1 - (2(a - 2b))^2 \] ### Step 3: Apply the Difference of Squares Formula We can use the difference of squares formula, which states that \(x^2 - y^2 = (x + y)(x - y)\). Here, let \(x = 1\) and \(y = 2(a - 2b)\): \[ 1 - (2(a - 2b))^2 = (1 + 2(a - 2b))(1 - 2(a - 2b)) \] ### Step 4: Simplify Each Factor Now simplify each factor: 1. For the first factor: \[ 1 + 2(a - 2b) = 1 + 2a - 4b \] 2. For the second factor: \[ 1 - 2(a - 2b) = 1 - 2a + 4b \] ### Step 5: Write the Final Factorised Form Putting it all together, the factorised form of the expression is: \[ (1 + 2a - 4b)(1 - 2a + 4b) \] ### Final Answer Thus, the factorised form of \(1 - 4(a - 2b)^2\) is: \[ (1 + 2a - 4b)(1 - 2a + 4b) \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Factorise : (ii) 25 (a - 5b)^2 - 4 (a - 3b)^2

Factorise : (ix) 12 (a+b)^(2) - (a+b) - 35

Factorise : (i) (a- 3b)^2 - 36 b^2

Factorise : (ii) 54 a^(2) b^(2) - 6

Factorise : 3a^(2) -1-2a

Factorise : (i) a^(2) - (b-c)^(2)

Factorise : (i) (a+b)^2 -11 (a+b) - 42

Factorise : a^(2) - (2a + 3b)^(2)

Factorise : x^(2) (a-b) - y^(2) (a-b) + z^(2) (a-b)

Factorise : x^(2) - (b -2) x-2b