Home
Class 8
MATHS
Factorise : (ii) 9(x+y)^2 - 16 (x-3y)^2...

Factorise : (ii) `9(x+y)^2 - 16 (x-3y)^2`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( 9(x+y)^2 - 16(x-3y)^2 \), we can follow these steps: ### Step 1: Recognize the difference of squares The expression is in the form \( a^2 - b^2 \), where: - \( a = 3(x+y) \) - \( b = 4(x-3y) \) ### Step 2: Apply the difference of squares formula Using the difference of squares formula \( a^2 - b^2 = (a-b)(a+b) \): \[ 9(x+y)^2 - 16(x-3y)^2 = (3(x+y) - 4(x-3y))(3(x+y) + 4(x-3y)) \] ### Step 3: Simplify each factor Now we need to simplify both factors: **For the first factor:** \[ 3(x+y) - 4(x-3y) = 3x + 3y - 4x + 12y = -x + 15y = -(x - 15y) \] **For the second factor:** \[ 3(x+y) + 4(x-3y) = 3x + 3y + 4x - 12y = 7x - 9y \] ### Step 4: Combine the factors Putting it all together, we have: \[ 9(x+y)^2 - 16(x-3y)^2 = -(x - 15y)(7x - 9y) \] ### Final Answer Thus, the factorised form of the expression is: \[ -(x - 15y)(7x - 9y) \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Factorise : 25 (2x + y)^2 - 16 (x-y)^2

Factorise : (ii) 25 (2x - y)^(2) - 16 (x-2y)^(2)

Factorise : (ii) 7+10 (x-y) - 8 (x-y)^2

Factorise : (v) 9a (x-2y)^4 - 12a (x-2y)^3

Factorise : (vi) 15 (2x - y)^(2) - 16 (2x -y) - 15

Factorise : (iv) (2x - y)^(3) - (2x - y)

Factorise : 75 (x+y)^2 - 48 (x-y)^2

Factorise : (ii) 3x^2 y - 6xy^2 + 9xy

Factorise : 1 - (2x + 3y) - 6 (2x + 3y)^2

Factorise : (viii) (3x - 2y)^(2) - 5 (3x -2y) - 24