Home
Class 8
MATHS
Factorise : (ii) y^2 + 5y - 24...

Factorise : (ii) `y^2 + 5y - 24`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( y^2 + 5y - 24 \), we will follow these steps: ### Step 1: Identify the coefficients The expression is in the form \( ay^2 + by + c \), where: - \( a = 1 \) (coefficient of \( y^2 \)) - \( b = 5 \) (coefficient of \( y \)) - \( c = -24 \) (constant term) ### Step 2: Find two numbers that multiply to \( ac \) and add to \( b \) We need to find two numbers that multiply to \( ac = 1 \times -24 = -24 \) and add up to \( b = 5 \). ### Step 3: List the factor pairs of \(-24\) The factor pairs of \(-24\) are: - \( (1, -24) \) - \( (-1, 24) \) - \( (2, -12) \) - \( (-2, 12) \) - \( (3, -8) \) - \( (-3, 8) \) - \( (4, -6) \) - \( (-4, 6) \) ### Step 4: Check which pair adds up to \( 5 \) Now, we check which of these pairs adds up to \( 5 \): - \( 3 + (-8) = -5 \) - \( -3 + 8 = 5 \) (This is the pair we need) ### Step 5: Rewrite the middle term using the found numbers We can rewrite the expression \( y^2 + 5y - 24 \) as: \[ y^2 - 3y + 8y - 24 \] ### Step 6: Group the terms Now, we group the terms: \[ (y^2 - 3y) + (8y - 24) \] ### Step 7: Factor out the common terms Now, we factor out the common terms from each group: \[ y(y - 3) + 8(y - 3) \] ### Step 8: Factor out the common binomial Now, we can factor out the common binomial \( (y - 3) \): \[ (y - 3)(y + 8) \] ### Final Answer Thus, the factorised form of \( y^2 + 5y - 24 \) is: \[ (y - 3)(y + 8) \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Factorise : (ii) x^(2) y - xy^(2) + 5x - 5y

Factorise : (ii) 3x^2 y - 6xy^2 + 9xy

Factorise : (iv) 5x^(2) - 4xy - 12y^(2)

Factorise : (ii) a^2 - (b+5) a + 5b

Factorise : (i) y^3 - 3y^2 + 2y - 6 - xy + 3x

Factorise : (ii) 25 (a - 5b)^2 - 4 (a - 3b)^2

Factorise : (vii) x^(2) y^(2) - 3xy - 40

Factorise : (ii) 25 (2x - y)^(2) - 16 (x-2y)^(2)

Factorise : (ii) 2x (a+b) - 3y (a+b)

Factorise : (ii) 9(x+y)^2 - 16 (x-3y)^2