Home
Class 8
MATHS
Factorise : (i) (a+b)^2 -11 (a+b) - 42...

Factorise : (i) `(a+b)^2 -11 (a+b) - 42`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \((a+b)^2 - 11(a+b) - 42\), we can follow these steps: ### Step 1: Substitute \(a + b\) with \(x\) Let \(x = a + b\). Then the expression becomes: \[ x^2 - 11x - 42 \] ### Step 2: Factor the quadratic expression We need to factor the quadratic expression \(x^2 - 11x - 42\). We are looking for two numbers that multiply to \(-42\) (the constant term) and add to \(-11\) (the coefficient of \(x\)). ### Step 3: Find the two numbers The factors of \(-42\) that add up to \(-11\) are \(-14\) and \(3\): - \(-14 \times 3 = -42\) - \(-14 + 3 = -11\) ### Step 4: Rewrite the quadratic expression We can rewrite the quadratic expression using the two numbers found: \[ x^2 - 14x + 3x - 42 \] ### Step 5: Group the terms Now, we group the terms: \[ (x^2 - 14x) + (3x - 42) \] ### Step 6: Factor by grouping Now, we can factor out the common factors from each group: \[ x(x - 14) + 3(x - 14) \] ### Step 7: Factor out the common binomial Now, we can factor out the common binomial \((x - 14)\): \[ (x - 14)(x + 3) \] ### Step 8: Substitute back \(x\) with \(a + b\) Finally, we substitute back \(x\) with \(a + b\): \[ (a + b - 14)(a + b + 3) \] ### Final Answer Thus, the factorised form of \((a+b)^2 - 11(a+b) - 42\) is: \[ (a + b - 14)(a + b + 3) \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Factorise : (i) (a- 3b)^2 - 36 b^2

Factorise : (ix) 12 (a+b)^(2) - (a+b) - 35

Factorise : (i) 1-4 (a-2b)^2

Factorise : 4 (2a + b)^2 - (a-b)^2

Factorise : (ii) 25 (a - 5b)^2 - 4 (a - 3b)^2

Factorise : (2a + b)^(2) - 6a - 3b - 4

Factorise : (a + 2b)^2 - a^2

Factorise : (5a - 2b)^2 - (2a - b)^2

Factorise : (ii) 2x (a+b) - 3y (a+b)

Factorise : (ii) a^2 - (b+5) a + 5b