Home
Class 8
MATHS
Factorise : (ii) 7+10 (x-y) - 8 (x-y)^2...

Factorise : (ii) `7+10 (x-y) - 8 (x-y)^2`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( 7 + 10(x - y) - 8(x - y)^2 \), we can follow these steps: ### Step 1: Substitute \( x - y \) Let \( z = x - y \). Then, we can rewrite the expression as: \[ 7 + 10z - 8z^2 \] ### Step 2: Rearrange the expression Rearranging the expression gives us: \[ -8z^2 + 10z + 7 \] To make it easier to factor, we can multiply through by -1: \[ 8z^2 - 10z - 7 \] ### Step 3: Factor the quadratic expression We want to factor \( 8z^2 - 10z - 7 \). We need two numbers that multiply to \( 8 \times -7 = -56 \) and add to \( -10 \). The numbers that work are \( -14 \) and \( 4 \). ### Step 4: Rewrite the middle term We can rewrite the expression as: \[ 8z^2 - 14z + 4z - 7 \] ### Step 5: Factor by grouping Now, we group the terms: \[ (8z^2 - 14z) + (4z - 7) \] Factoring out the common factors in each group gives us: \[ 2z(4z - 7) + 1(4z - 7) \] ### Step 6: Factor out the common binomial Now we can factor out the common binomial \( (4z - 7) \): \[ (4z - 7)(2z + 1) \] ### Step 7: Substitute back \( z = x - y \) Now we substitute back \( z = x - y \): \[ (4(x - y) - 7)(2(x - y) + 1) \] This simplifies to: \[ (4x - 4y - 7)(2x - 2y + 1) \] ### Final Answer Thus, the factorised form of the expression \( 7 + 10(x - y) - 8(x - y)^2 \) is: \[ (4x - 4y - 7)(2x - 2y + 1) \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Factorise : (ii) 9(x+y)^2 - 16 (x-3y)^2

Factorise : (ii) 25 (2x - y)^(2) - 16 (x-2y)^(2)

Factorise : (ii) y^2 + 5y - 24

Factorise : (iv) (2x - y)^(3) - (2x - y)

Factorise : 75 (x+y)^2 - 48 (x-y)^2

Factorise : (ii) 2x (a+b) - 3y (a+b)

Factorise : x^(2) - 10 xy + 24y^(2)

Factorise : 25 (2x + y)^2 - 16 (x-y)^2

Factorise : 49 (x-y)^2 - 9 (2x +y)^2

Factorise : 4x(3x - 2y) - 2y (3x-2y)