Home
Class 11
MATHS
Prove that int0^(pi/2) sin 2x log tan x ...

Prove that `int_0^(pi/2) sin 2x log tan x \ dx = 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int_0^(pi//2) sin 2x log tanx dx=0

int_0^(pi/2) sin x dx

Prove that int_(0)^((pi)/(2))sin2x log tan xdx=0

int_(0)^(pi//2) sin 2 x (tan x) dx=

int_(0)^(pi//2) sin 2x log tan x dx is equal to

int_(0)^(pi//2) sin 2x log (tan x) dx is equal to

int_(0)^((pi)/(2))sin2x*log(tan x)dx=

Prove that (a) int_(0)^(pi//2)sin2xlog(tanx)dx=0 (b)int_(0)^(1)log((1)/(x)-1)dx=0

int_(0)^(pi//2) log (tan x ) dx=