Home
Class 12
MATHS
Prove that sin^(-1) (cos (sin^(-1) x)) ...

Prove that ` sin^(-1) (cos (sin^(-1) x)) + cos^(-1) (sin (cos^(-1) x))=pi/2 , |x| le 1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

Prove that the identities,sin^(-1)cos(sin^(-1)x)+cos^(-1)sin(cos^(-1)x)=(pi)/(2)|x|<=1

Prove that : sin^(-1)x+cos^(-1)x=(pi)/(2)

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

Prove that sin^(-1)x=cos^(-1) sqrt(1-x^2)

Prove that : cos (2 sin^(-1) x) = 1-2x^2

Prove that : sin^(-1)x+cos^(-1)x=(pi)/(2), |x| le 1

sin[cos^(-1)x]=cos[sin^(-1)x]

If sin^(-1)x + sin^(-1)y =(2pi)/3 , then: cos^(-1)x +cos^(-1)y=

If sin^(-1)x +sin^(-1)y =pi then cos^(-1)x +cos^(-1)y is :