Home
Class 12
MATHS
If y^(x)=e^(y-x), then prove that (dy)...

If ` y^(x)=e^(y-x)`, then prove that `(dy)/(dx) = ((1+logy)^(2))/(logy)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)

If e^(y)=y^(x), prove that (dy)/(dx)=((log y)^(2))/(log y-1)

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(logx)/((1+logx)^(2))

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(ln x)/((1+ln x)^(2))

If y=(e^(x))/(x) then prove that x(dy)/(dx)=y (x-1)

If x = e^(x//y) , then prove that (dy)/(dx) = (x-y)/(xlogx) .

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If y=e^(x)+e^(-x), prove that (dy)/(dx)=sqrt(y^(2)-4)