Home
Class 12
MATHS
To maximise the objective function z=x+2...

To maximise the objective function `z=x+2y` under the constraints `x-y le 2, x+yle4 and x,yge0` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of linear objective function z=2x+2y under linear constraints 3x+2yge12,x+3yge11 and x,y ge0 is

The minimum value of linear objective function z =2x + 2y under linear constraints 3x + 2y ge 12 , x + 3y ge 11 and x,y ge 0 is

The maximum value of the objective function Z=3x+2y for linear constraints x+y le 7, 2x+3y le 16, x ge0, y ge0 is

The maximum value of the objective function Z=3x+4y subject to the constraints x+y le 4, x ge 0 , y le o is

The solution for minimizing the function z = x+ y under a LPP with constraints x+yge1,x+2yle10,yle4 and x,y,ge0 is

The maximum and minimum values of the objective function Z = 3x - 4 y subject to the constraints x- 2y le 0, -3x +y le 4 x-y le 6 , x,y ge 0 are respectively

The maximum and minimum values of the objective function Z = x + 2y subject to the constraints x+2y ge 100, 2x -y le 0, 2x +y le 200 occurs respectively at

The constraints -x+yle1,-x+3yle9,xge0,yge0 defines

Maximise the function Z=11x+7y , subject to the constraints x le 3, yle 2, x ge 0, y ge 0