Home
Class 12
MATHS
C(n,0)+C(n,1)+C(n,2)+...+C(n,n)=...

`C(n,0)+C(n,1)+C(n,2)+...+C(n,n)=`

A

`2+2^(2) +2^(3) P+…… +2^(n)`

B

`1+2+2^(2)+2^(3) +….+2^(n)`

C

`1+2+2^(2)+2^(3) +2^(3) +…..+ 2^(n-1)`

D

`2+2^(2) +2^(3) +…..+2^(n-1)`

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLE, INVERSE TRIGONOMETRIC FUNCTION

    NDA PREVIOUS YEARS|Exercise MCQ|103 Videos
  • QUESTION PAPER 2021(I)

    NDA PREVIOUS YEARS|Exercise MULTIPLE CHOICE QUESTION|108 Videos

Similar Questions

Explore conceptually related problems

C (n, 0) -C (n, 2) + C (n, 4) -...... = 2 ^ ((n) / (2)) cos (n (pi) / (4))

If C_(r) = .^(n)C_(r) then prove that (C_(0) + C_(1)) (C_(1) + C_(2)) "….." (C_(n-1) + C_(n)) = (C_(1)C_(2)"…."C_(n-1)C_(n))(n+1)^(n)//n!

Knowledge Check

  • If ""(n)C_(0), ""(n)C_(1), ""(n)C_(2), ...., ""(n)C_(n), denote the binomial coefficients in the expansion of (1 + x)^(n) and p + q =1 sum_(r=0)^(n) r^(2 " "^n)C_(r) p^(r) q^(n-r) = .

    A
    npq
    B
    np (p+q)
    C
    `np (np + q)`
    D
    ` np (p + nq)`
  • If C_(0),C_(1), C_(2),...,C_(n) denote the cefficients in the expansion of (1 + x)^(n) , then C_(0) + 3 .C_(1) + 5 . C_(2)+ ...+ (2n + 1) C_(n) = .

    A
    `n.2^(n)`
    B
    `(n-1)2^(n)`
    C
    `(n+1)2^(n+1)`
    D
    `( n+1)2^(n)`
  • The arithmetic mean of ""^(n)C_(0),""^(n)C_(1),""^(n)C_(2), ..., ""^(n)C_(n) , is

    A
    `(2^(n))/(n)`
    B
    `(2^(n)-1)/(n)`
    C
    `(2^(n))/(n+1)`
    D
    `(2^(n-1))/(n+1)`
  • Similar Questions

    Explore conceptually related problems

    (C_(0)+C_(1))(C_(1)+C_(2))(C_(2)+C_(3))(C_(3)+C_(4)).........(C_(n-1)+C_(n))=(C_(0)C_(1)C_(2).....C_(n-1)(n+1)^(n))/(n!)

    If C_(0) , C_(1), C_(2), …, C_(n) are the binomial coefficients in the expansion of (1 + x)^(n) , prove that (C_(0) + 2C_(1) + C_(2) )(C_(1) + 2C_(2) + C_(3))…(C_(n-1) + 2C_(n) + C_(n+1)) ((n-2)^(n))/((n+1)!) prod _(r=1)^(n) (C_(r-1) + C_(r)) .

    If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) C_(n) - C_(1) C_(n-1) + C_(2) C_(n-2) - …+ (-1)^(n) C_(n) C_(0) = 0 or (-1)^(n//2) (n!)/((n//2)!(n//2)!) , according as n is odd or even .

    If S = sum_(n=1)^(oo) [(""C_(0) + ""^(n) + C_(1) + ""^(n)C_(2) + ... " "^(n)C_(n))/(""^(n)P_(n))] then S =

    If C_(r) = ""^(n)C_(r) and (C_(0) + C_(1)) (C_(1) + C_(2)) … (C_(n-1) + C_(n)) = k ((n +1)^(n))/(n!) , then the value of k, is